Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4NeutronHPFFFissionFS.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // neutron_hp -- source file
27 // J.P. Wellisch, Nov-1996
28 // A prototype of the low energy neutron transport model.
29 //
31 #include "G4SystemOfUnits.hh"
32 
34 {
35  //G4cout << "G4NeutronHPFFFissionFS::Init" << G4endl;
36  G4String aString = "FF";
37 
38  G4String tString = dirName;
39  G4bool dbool;
40  G4NeutronHPDataUsed aFile = theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), M, tString, aString , dbool);
41  G4String filename = aFile.GetName();
42  theBaseA = aFile.GetA();
43  theBaseZ = aFile.GetZ();
44 
45 //3456
46  if ( !dbool || ( Z < 2.5 && ( std::abs(theBaseZ-Z)>0.0001 || std::abs(theBaseA-A)>0.0001) ) )
47  {
48  hasAnyData = false;
49  hasFSData = false;
50  hasXsec = false;
51  return; // no data for exactly this isotope.
52  }
53  std::ifstream theData(filename, std::ios::in);
54  G4double dummy;
55  if ( !theData )
56  {
57  theData.close();
58  hasFSData = false;
59  hasXsec = false;
60  hasAnyData = false;
61  return; // no data for this FS for this isotope
62  }
63 
64 
65  hasFSData = true;
66  // MT Energy FPS Yield
67  //std::map< int , std::map< double , std::map< int , double >* >* > FisionProductYieldData;
68  while ( theData.good() )
69  {
70  G4int iMT, iMF;
71  G4int imax;
72  //Reading the data
73  // MT MF AWR
74  theData >> iMT >> iMF >> dummy;
75  // nBlock
76  theData >> imax;
77  //if ( !theData.good() ) continue;
78  // Ei FPS Yield
79  std::map< G4double , std::map< G4int , G4double >* >* mEnergyFSPData = new std::map< G4double , std::map< G4int , G4double >* >;
80 
81  std::map< G4double , G4int >* mInterporation = new std::map< G4double , G4int >;
82  for ( G4int i = 0 ; i <= imax ; i++ )
83  {
84 
85  G4double YY=0.0;
86  G4double Ei;
87  G4int jmax;
88  G4int ip;
89  // energy of incidnece neutron
90  theData >> Ei;
91  // Number of data set followings
92  theData >> jmax;
93  // interpolation scheme
94  theData >> ip;
95  mInterporation->insert( std::pair<G4double,G4int>(Ei*eV,ip) );
96  // nNumber nIP
97  std::map<G4int,G4double>* mFSPYieldData = new std::map<G4int,G4double>;
98  for ( G4int j = 0 ; j < jmax ; j++ )
99  {
100  G4int FSP;
101  G4int mFSP;
102  G4double Y;
103  theData >> FSP >> mFSP >> Y;
104  G4int k = FSP*100+mFSP;
105  YY = YY + Y;
106  //if ( iMT == 454 )G4cout << iMT << " " << i << " " << j << " " << k << " " << Y << " " << YY << G4endl;
107  mFSPYieldData->insert( std::pair<G4int,G4double>( k , YY ) );
108  }
109  mEnergyFSPData->insert( std::pair<G4double,std::map<G4int,G4double>*>(Ei*eV,mFSPYieldData) );
110  }
111 
112  FissionProductYieldData.insert( std::pair< G4int , std::map< G4double , std::map< G4int , G4double >* >* > (iMT,mEnergyFSPData));
113  mMTInterpolation.insert( std::pair<G4int,std::map<G4double,G4int>*> (iMT,mInterporation) );
114  }
115  theData.close();
116 }
117 
119 {
120  G4DynamicParticleVector * aResult;
121 // G4cout <<"G4NeutronHPFFFissionFS::ApplyYourself +"<<G4endl;
122  aResult = G4NeutronHPFissionBaseFS::ApplyYourself(nNeutrons);
123  return aResult;
124 }
125 
127 {
128  //G4cout << "G4NeutronHPFFFissionFS::GetAFissionFragment " << G4endl;
129 
130  G4double rand =G4UniformRand();
131  //G4cout << rand << G4endl;
132 
133  std::map< G4double , std::map< G4int , G4double >* >* mEnergyFSPData = FissionProductYieldData.find( 454 )->second;
134 
135  //It is not clear that the treatment of the scheme 2 on two-dimensional interpolation.
136  //So, here just use the closest energy point array of yield data.
137  //TK120531
138  G4double key_energy = DBL_MAX;
139  if ( mEnergyFSPData->size() == 1 )
140  {
141  key_energy = mEnergyFSPData->begin()->first;
142  }
143  else
144  {
145  //Find closest energy point
146  G4double Dmin=DBL_MAX;
147  G4int i = 0;
148  for ( std::map< G4double , std::map< G4int , G4double >* >::iterator it = mEnergyFSPData->begin() ;
149  it != mEnergyFSPData->end() ; it++ )
150  {
151  G4double e = (it->first);
152  G4double d = std::fabs ( energy - e );
153  if ( d < Dmin )
154  {
155  Dmin = d;
156  key_energy = e;
157  }
158  i++;
159  }
160  }
161 
162  std::map<G4int,G4double>* mFSPYieldData = (*mEnergyFSPData)[key_energy];
163 
164  G4int ifrag=0;
165  G4double ceilling = mFSPYieldData->rbegin()->second; // Becaseu of numerical accuracy, this is not always 2
166  for ( std::map<G4int,G4double>::iterator it = mFSPYieldData->begin() ; it != mFSPYieldData->end() ; it++ )
167  {
168  //if ( ( rand - it->second/ceilling ) < 1.0e-6 ) std::cout << rand - it->second/ceilling << std::endl;
169  if ( rand <= it->second/ceilling )
170  {
171  //G4cout << it->first << " " << it->second/ceilling << G4endl;
172  ifrag = it->first;
173  break;
174  }
175  }
176 
177  fragZ = ifrag/100000;
178  fragA = (ifrag%100000)/100;
179  fragM = (ifrag%100);
180 
181  //G4cout << fragZ << " " << fragA << " " << fragM << G4endl;
182 }