Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4LivermoreGammaConversionModel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // Author: Sebastien Incerti
27 // 22 January 2012
28 // on base of G4LivermoreGammaConversionModel
29 
31 #include "G4PhysicalConstants.hh"
32 #include "G4SystemOfUnits.hh"
33 
34 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
35 
36 using namespace std;
37 
38 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
39 
41  const G4String& nam)
42 :G4VEmModel(nam),smallEnergy(2.*MeV),isInitialised(false),maxZ(99)
43 {
44  fParticleChange = 0;
45 
46  lowEnergyLimit = 2.0*electron_mass_c2;
47  data.resize(maxZ+1,0);
48 
49  verboseLevel= 0;
50  // Verbosity scale for debugging purposes:
51  // 0 = nothing
52  // 1 = calculation of cross sections, file openings...
53  // 2 = entering in methods
54 
55  if(verboseLevel > 0)
56  {
57  G4cout << "G4LivermoreGammaConversionModel is constructed " << G4endl;
58  }
59 }
60 
61 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
62 
64 {
65  for(G4int i=0; i<=maxZ; ++i) { delete data[i]; }
66 }
67 
68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
69 
70 void
72  const G4DataVector& cuts)
73 {
74  if (verboseLevel > 1)
75  {
76  G4cout << "Calling Initialise() of G4LivermoreGammaConversionModel." << G4endl
77  << "Energy range: "
78  << LowEnergyLimit() / MeV << " MeV - "
79  << HighEnergyLimit() / GeV << " GeV"
80  << G4endl;
81  }
82 
83  // Initialise element selector
84 
85  InitialiseElementSelectors(particle, cuts);
86 
87  // Access to elements
88 
89  char* path = getenv("G4LEDATA");
90 
91  G4ProductionCutsTable* theCoupleTable =
93  G4int numOfCouples = theCoupleTable->GetTableSize();
94 
95  for(G4int i=0; i<numOfCouples; ++i)
96  {
97  const G4Material* material =
98  theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();
99  const G4ElementVector* theElementVector = material->GetElementVector();
100  G4int nelm = material->GetNumberOfElements();
101 
102  for (G4int j=0; j<nelm; ++j)
103  {
104 
105  G4int Z = (G4int)(*theElementVector)[j]->GetZ();
106  if(Z < 1) { Z = 1; }
107  else if(Z > maxZ) { Z = maxZ; }
108  if(!data[Z]) { ReadData(Z, path); }
109  }
110  }
111  //
112 
113  if(isInitialised) { return; }
114  fParticleChange = GetParticleChangeForGamma();
115  isInitialised = true;
116 }
117 
118 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
119 
120 void G4LivermoreGammaConversionModel::ReadData(size_t Z, const char* path)
121 {
122  if (verboseLevel > 1)
123  {
124  G4cout << "Calling ReadData() of G4LivermoreGammaConversionModel"
125  << G4endl;
126  }
127 
128  if(data[Z]) { return; }
129 
130  const char* datadir = path;
131 
132  if(!datadir)
133  {
134  datadir = getenv("G4LEDATA");
135  if(!datadir)
136  {
137  G4Exception("G4LivermoreGammaConversionModel::ReadData()",
138  "em0006",FatalException,
139  "Environment variable G4LEDATA not defined");
140  return;
141  }
142  }
143 
144  //
145 
146  data[Z] = new G4LPhysicsFreeVector();
147 
148  // Activation of spline interpolation
149  data[Z] ->SetSpline(true);
150  //
151 
152  std::ostringstream ost;
153  ost << datadir << "/livermore/pair/pp-cs-" << Z <<".dat";
154  std::ifstream fin(ost.str().c_str());
155 
156  if( !fin.is_open())
157  {
159  ed << "G4LivermoreGammaConversionModel data file <" << ost.str().c_str()
160  << "> is not opened!" << G4endl;
161  G4Exception("G4LivermoreGammaConversionModel::ReadData()",
162  "em0003",FatalException,
163  ed,"G4LEDATA version should be G4EMLOW6.27 or later.");
164  return;
165  }
166 
167  else
168  {
169 
170  if(verboseLevel > 3) { G4cout << "File " << ost.str()
171  << " is opened by G4LivermoreGammaConversionModel" << G4endl;}
172 
173  data[Z]->Retrieve(fin, true);
174  }
175 
176 
177 }
178 
179 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
180 
181 G4double
183  G4double GammaEnergy,
184  G4double Z, G4double,
186 {
187  if (verboseLevel > 1)
188  {
189  G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermoreGammaConversionModel"
190  << G4endl;
191  }
192 
193  if (GammaEnergy < lowEnergyLimit) { return 0.0; }
194 
195  G4double xs = 0.0;
196 
197  G4int intZ=G4int(Z);
198 
199  if(intZ < 1 || intZ > maxZ) { return xs; }
200 
201  G4LPhysicsFreeVector* pv = data[intZ];
202 
203  // element was not initialised
204  if(!pv)
205  {
206  char* path = getenv("G4LEDATA");
207  ReadData(intZ, path);
208  pv = data[intZ];
209  if(!pv) { return xs; }
210  }
211  // x-section is taken from the table
212  xs = pv->Value(GammaEnergy);
213 
214  if(verboseLevel > 0)
215  {
216  G4int n = pv->GetVectorLength() - 1;
217  G4cout << "****** DEBUG: tcs value for Z=" << Z << " at energy (MeV)=" << GammaEnergy/MeV << G4endl;
218  G4cout << " cs (Geant4 internal unit)=" << xs << G4endl;
219  G4cout << " -> first cs value in EADL data file (iu) =" << (*pv)[0] << G4endl;
220  G4cout << " -> last cs value in EADL data file (iu) =" << (*pv)[n] << G4endl;
221  G4cout << "*********************************************************" << G4endl;
222  }
223 
224  return xs;
225 
226 }
227 
228 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
229 
231  std::vector<G4DynamicParticle*>* fvect,
232  const G4MaterialCutsCouple* couple,
233  const G4DynamicParticle* aDynamicGamma,
235 {
236 
237 // The energies of the e+ e- secondaries are sampled using the Bethe - Heitler
238 // cross sections with Coulomb correction. A modified version of the random
239 // number techniques of Butcher & Messel is used (Nuc Phys 20(1960),15).
240 
241 // Note 1 : Effects due to the breakdown of the Born approximation at low
242 // energy are ignored.
243 // Note 2 : The differential cross section implicitly takes account of
244 // pair creation in both nuclear and atomic electron fields. However triplet
245 // prodution is not generated.
246 
247  if (verboseLevel > 1)
248  G4cout << "Calling SampleSecondaries() of G4LivermoreGammaConversionModel" << G4endl;
249 
250  G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
251  G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
252 
253  G4double epsilon ;
254  G4double epsilon0Local = electron_mass_c2 / photonEnergy ;
255 
256  // Do it fast if photon energy < 2. MeV
257  if (photonEnergy < smallEnergy )
258  {
259  epsilon = epsilon0Local + (0.5 - epsilon0Local) * G4UniformRand();
260  }
261  else
262  {
263  // Select randomly one element in the current material
264 
265  const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition();
266  const G4Element* element = SelectRandomAtom(couple,particle,photonEnergy);
267 
268  if (element == 0)
269  {
270  G4cout << "G4LivermoreGammaConversionModel::SampleSecondaries - element = 0"
271  << G4endl;
272  return;
273  }
274  G4IonisParamElm* ionisation = element->GetIonisation();
275  if (ionisation == 0)
276  {
277  G4cout << "G4LivermoreGammaConversionModel::SampleSecondaries - ionisation = 0"
278  << G4endl;
279  return;
280  }
281 
282  // Extract Coulomb factor for this Element
283  G4double fZ = 8. * (ionisation->GetlogZ3());
284  if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb());
285 
286  // Limits of the screening variable
287  G4double screenFactor = 136. * epsilon0Local / (element->GetIonisation()->GetZ3()) ;
288  G4double screenMax = std::exp ((42.24 - fZ)/8.368) - 0.952 ;
289  G4double screenMin = std::min(4.*screenFactor,screenMax) ;
290 
291  // Limits of the energy sampling
292  G4double epsilon1 = 0.5 - 0.5 * std::sqrt(1. - screenMin / screenMax) ;
293  G4double epsilonMin = std::max(epsilon0Local,epsilon1);
294  G4double epsilonRange = 0.5 - epsilonMin ;
295 
296  // Sample the energy rate of the created electron (or positron)
297  G4double screen;
298  G4double gReject ;
299 
300  G4double f10 = ScreenFunction1(screenMin) - fZ;
301  G4double f20 = ScreenFunction2(screenMin) - fZ;
302  G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.);
303  G4double normF2 = std::max(1.5 * f20,0.);
304 
305  do
306  {
307  if (normF1 / (normF1 + normF2) > G4UniformRand() )
308  {
309  epsilon = 0.5 - epsilonRange * std::pow(G4UniformRand(), 0.333333) ;
310  screen = screenFactor / (epsilon * (1. - epsilon));
311  gReject = (ScreenFunction1(screen) - fZ) / f10 ;
312  }
313  else
314  {
315  epsilon = epsilonMin + epsilonRange * G4UniformRand();
316  screen = screenFactor / (epsilon * (1 - epsilon));
317  gReject = (ScreenFunction2(screen) - fZ) / f20 ;
318  }
319  } while ( gReject < G4UniformRand() );
320 
321  } // End of epsilon sampling
322 
323  // Fix charges randomly
324 
325  G4double electronTotEnergy;
326  G4double positronTotEnergy;
327 
328  if (G4UniformRand() > 0.5)
329  {
330  electronTotEnergy = (1. - epsilon) * photonEnergy;
331  positronTotEnergy = epsilon * photonEnergy;
332  }
333  else
334  {
335  positronTotEnergy = (1. - epsilon) * photonEnergy;
336  electronTotEnergy = epsilon * photonEnergy;
337  }
338 
339  // Scattered electron (positron) angles. ( Z - axis along the parent photon)
340  // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211),
341  // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977)
342 
343  G4double u;
344  const G4double a1 = 0.625;
345  G4double a2 = 3. * a1;
346  // G4double d = 27. ;
347 
348  // if (9. / (9. + d) > G4UniformRand())
349  if (0.25 > G4UniformRand())
350  {
351  u = - std::log(G4UniformRand() * G4UniformRand()) / a1 ;
352  }
353  else
354  {
355  u = - std::log(G4UniformRand() * G4UniformRand()) / a2 ;
356  }
357 
358  G4double thetaEle = u*electron_mass_c2/electronTotEnergy;
359  G4double thetaPos = u*electron_mass_c2/positronTotEnergy;
360  G4double phi = twopi * G4UniformRand();
361 
362  G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
363  G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
364 
365 
366  // Kinematics of the created pair:
367  // the electron and positron are assumed to have a symetric angular
368  // distribution with respect to the Z axis along the parent photon
369 
370  G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ;
371 
372  G4ThreeVector electronDirection (dxEle, dyEle, dzEle);
373  electronDirection.rotateUz(photonDirection);
374 
376  electronDirection,
377  electronKineEnergy);
378 
379  // The e+ is always created
380  G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
381 
382  G4ThreeVector positronDirection (dxPos, dyPos, dzPos);
383  positronDirection.rotateUz(photonDirection);
384 
385  // Create G4DynamicParticle object for the particle2
387  positronDirection,
388  positronKineEnergy);
389  // Fill output vector
390  fvect->push_back(particle1);
391  fvect->push_back(particle2);
392 
393  // kill incident photon
394  fParticleChange->SetProposedKineticEnergy(0.);
395  fParticleChange->ProposeTrackStatus(fStopAndKill);
396 
397 }
398 
399 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
400 
401 G4double
402 G4LivermoreGammaConversionModel::ScreenFunction1(G4double screenVariable)
403 {
404  // Compute the value of the screening function 3*phi1 - phi2
405 
406  G4double value;
407 
408  if (screenVariable > 1.)
409  value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
410  else
411  value = 42.392 - screenVariable * (7.796 - 1.961 * screenVariable);
412 
413  return value;
414 }
415 
416 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
417 
418 G4double
419 G4LivermoreGammaConversionModel::ScreenFunction2(G4double screenVariable)
420 {
421  // Compute the value of the screening function 1.5*phi1 - 0.5*phi2
422 
423  G4double value;
424 
425  if (screenVariable > 1.)
426  value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
427  else
428  value = 41.405 - screenVariable * (5.828 - 0.8945 * screenVariable);
429 
430  return value;
431 }
432