Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4LEXiZeroInelastic.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 // Hadronic Process: XiZero Inelastic Process
29 // J.L. Chuma, TRIUMF, 20-Feb-1997
30 // Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
31 
32 #include "G4LEXiZeroInelastic.hh"
33 #include "G4PhysicalConstants.hh"
34 #include "G4SystemOfUnits.hh"
35 #include "Randomize.hh"
36 
38 {
39  outFile << "G4LEXiZeroInelastic is one of the Low Energy Parameterized\n"
40  << "(LEP) models used to implement inelastic X0 scattering\n"
41  << "from nuclei. It is a re-engineered version of the GHEISHA\n"
42  << "code of H. Fesefeldt. It divides the initial collision\n"
43  << "products into backward- and forward-going clusters which are\n"
44  << "then decayed into final state hadrons. The model does not\n"
45  << "conserve energy on an event-by-event basis. It may be\n"
46  << "applied to X0 with initial energies between 0 and 25\n"
47  << "GeV.\n";
48 }
49 
50 
53  G4Nucleus& targetNucleus)
54 {
55  const G4HadProjectile *originalIncident = &aTrack;
56  if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
60  return &theParticleChange;
61  }
62 
63  // create the target particle
64  G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
65 
66  if (verboseLevel > 1) {
67  const G4Material *targetMaterial = aTrack.GetMaterial();
68  G4cout << "G4LEXiZeroInelastic::ApplyYourself called" << G4endl;
69  G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
70  G4cout << "target material = " << targetMaterial->GetName() << ", ";
71  G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
72  << G4endl;
73  }
74 
75  // Fermi motion and evaporation
76  // As of Geant3, the Fermi energy calculation had not been done
77  G4double ek = originalIncident->GetKineticEnergy()/MeV;
78  G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
79  G4ReactionProduct modifiedOriginal;
80  modifiedOriginal = *originalIncident;
81 
82  G4double tkin = targetNucleus.Cinema(ek);
83  ek += tkin;
84  modifiedOriginal.SetKineticEnergy(ek*MeV);
85  G4double et = ek + amas;
86  G4double p = std::sqrt(std::abs((et-amas)*(et+amas)) );
87  G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
88  if (pp > 0.0) {
89  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
90  modifiedOriginal.SetMomentum( momentum * (p/pp) );
91  }
92 
93  // calculate black track energies
94  tkin = targetNucleus.EvaporationEffects(ek);
95  ek -= tkin;
96  modifiedOriginal.SetKineticEnergy(ek*MeV);
97  et = ek + amas;
98  p = std::sqrt( std::abs((et-amas)*(et+amas)) );
99  pp = modifiedOriginal.GetMomentum().mag()/MeV;
100  if (pp > 0.0) {
101  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
102  modifiedOriginal.SetMomentum( momentum * (p/pp) );
103  }
104  G4ReactionProduct currentParticle = modifiedOriginal;
105  G4ReactionProduct targetParticle;
106  targetParticle = *originalTarget;
107  currentParticle.SetSide(1); // incident always goes in forward hemisphere
108  targetParticle.SetSide(-1); // target always goes in backward hemisphere
109  G4bool incidentHasChanged = false;
110  G4bool targetHasChanged = false;
111  G4bool quasiElastic = false;
112  G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
113  G4int vecLen = 0;
114  vec.Initialize(0);
115 
116  const G4double cutOff = 0.1;
117  if (currentParticle.GetKineticEnergy()/MeV > cutOff)
118  Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
119  incidentHasChanged, targetHasChanged, quasiElastic);
120 
121  CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
122  modifiedOriginal, targetNucleus, currentParticle,
123  targetParticle, incidentHasChanged, targetHasChanged,
124  quasiElastic);
125 
126  SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
127 
128  if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
129 
130  delete originalTarget;
131  return &theParticleChange;
132 }
133 
134 
135 void G4LEXiZeroInelastic::Cascade(
137  G4int& vecLen,
138  const G4HadProjectile *originalIncident,
139  G4ReactionProduct &currentParticle,
140  G4ReactionProduct &targetParticle,
141  G4bool &incidentHasChanged,
142  G4bool &targetHasChanged,
143  G4bool &quasiElastic)
144 {
145  // derived from original FORTRAN code CASX0 by H. Fesefeldt (20-Jan-1989)
146  //
147  // XiZero undergoes interaction with nucleon within a nucleus. Check if it is
148  // energetically possible to produce pions/kaons. In not, assume nuclear excitation
149  // occurs and input particle is degraded in energy. No other particles are produced.
150  // If reaction is possible, find the correct number of pions/protons/neutrons
151  // produced using an interpolation to multiplicity data. Replace some pions or
152  // protons/neutrons by kaons or strange baryons according to the average
153  // multiplicity per inelastic reaction.
154  //
155  const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
156  const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
157  const G4double targetMass = targetParticle.GetMass()/MeV;
158  G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
159  targetMass*targetMass +
160  2.0*targetMass*etOriginal );
161  G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
162  if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV )
163  {
164  quasiElastic = true;
165  return;
166  }
167  static G4bool first = true;
168  const G4int numMul = 1200;
169  const G4int numSec = 60;
170  static G4double protmul[numMul], protnorm[numSec]; // proton constants
171  static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
172  // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
173  G4int counter, nt=0, npos=0, nneg=0, nzero=0;
174  G4double test;
175  const G4double c = 1.25;
176  const G4double b[] = { 0.7, 0.7 };
177  if( first ) // compute normalization constants, this will only be Done once
178  {
179  first = false;
180  G4int i;
181  for( i=0; i<numMul; ++i )protmul[i] = 0.0;
182  for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
183  counter = -1;
184  for( npos=0; npos<(numSec/3); ++npos )
185  {
186  for( nneg=std::max(0,npos-2); nneg<=(npos+1); ++nneg )
187  {
188  for( nzero=0; nzero<numSec/3; ++nzero )
189  {
190  if( ++counter < numMul )
191  {
192  nt = npos+nneg+nzero;
193  if( nt>0 && nt<=numSec )
194  {
195  protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
196  protnorm[nt-1] += protmul[counter];
197  }
198  }
199  }
200  }
201  }
202  for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
203  for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
204  counter = -1;
205  for( npos=0; npos<numSec/3; ++npos )
206  {
207  for( nneg=std::max(0,npos-1); nneg<=(npos+2); ++nneg )
208  {
209  for( nzero=0; nzero<numSec/3; ++nzero )
210  {
211  if( ++counter < numMul )
212  {
213  nt = npos+nneg+nzero;
214  if( nt>0 && nt<=numSec )
215  {
216  neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
217  neutnorm[nt-1] += neutmul[counter];
218  }
219  }
220  }
221  }
222  }
223  for( i=0; i<numSec; ++i )
224  {
225  if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
226  if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
227  }
228  } // end of initialization
229 
230  const G4double expxu = 82.; // upper bound for arg. of exp
231  const G4double expxl = -expxu; // lower bound for arg. of exp
237 
238  // energetically possible to produce pion(s) --> inelastic scattering
239  G4double n, anpn;
240  GetNormalizationConstant(availableEnergy, n, anpn);
241  G4double ran = G4UniformRand();
242  G4double dum, excs = 0.0;
243  if( targetParticle.GetDefinition() == aProton )
244  {
245  counter = -1;
246  for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
247  {
248  for( nneg=std::max(0,npos-2); nneg<=(npos+1) && ran>=excs; ++nneg )
249  {
250  for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
251  {
252  if( ++counter < numMul )
253  {
254  nt = npos+nneg+nzero;
255  if( nt>0 && nt<=numSec )
256  {
257  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
258  dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
259  if( std::fabs(dum) < 1.0 )
260  {
261  if( test >= 1.0e-10 )excs += dum*test;
262  }
263  else
264  excs += dum*test;
265  }
266  }
267  }
268  }
269  }
270  if( ran >= excs ) // 3 previous loops continued to the end
271  {
272  quasiElastic = true;
273  return;
274  }
275  npos--; nneg--; nzero--;
276  //
277  // number of secondary mesons determined by kno distribution
278  // check for total charge of final state mesons to determine
279  // the kind of baryons to be produced, taking into account
280  // charge and strangeness conservation
281  //
282  if( npos < nneg+1 )
283  {
284  if( npos != nneg ) // charge mismatch
285  {
286  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
287  incidentHasChanged = true;
288  //
289  // correct the strangeness by replacing a pi- by a kaon-
290  //
291  vec.Initialize( 1 );
293  p->SetDefinition( aKaonMinus );
294  (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
295  vec.SetElement( vecLen++, p );
296  --nneg;
297  }
298  }
299  else if( npos == nneg+1 )
300  {
301  if( G4UniformRand() < 0.5 )
302  {
303  targetParticle.SetDefinitionAndUpdateE( aNeutron );
304  targetHasChanged = true;
305  }
306  else
307  {
308  currentParticle.SetDefinitionAndUpdateE( aXiMinus );
309  incidentHasChanged = true;
310  }
311  }
312  else
313  {
314  currentParticle.SetDefinitionAndUpdateE( aXiMinus );
315  incidentHasChanged = true;
316  targetParticle.SetDefinitionAndUpdateE( aNeutron );
317  targetHasChanged = true;
318  }
319  }
320  else // target must be a neutron
321  {
322  counter = -1;
323  for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
324  {
325  for( nneg=std::max(0,npos-1); nneg<=(npos+2) && ran>=excs; ++nneg )
326  {
327  for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
328  {
329  if( ++counter < numMul )
330  {
331  nt = npos+nneg+nzero;
332  if( nt>0 && nt<=numSec )
333  {
334  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
335  dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
336  if( std::fabs(dum) < 1.0 )
337  {
338  if( test >= 1.0e-10 )excs += dum*test;
339  }
340  else
341  excs += dum*test;
342  }
343  }
344  }
345  }
346  }
347  if( ran >= excs ) // 3 previous loops continued to the end
348  {
349  quasiElastic = true;
350  return;
351  }
352  npos--; nneg--; nzero--;
353  if( npos < nneg )
354  {
355  if( npos+1 == nneg )
356  {
357  targetParticle.SetDefinitionAndUpdateE( aProton );
358  targetHasChanged = true;
359  }
360  else // charge mismatch
361  {
362  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
363  incidentHasChanged = true;
364  targetParticle.SetDefinitionAndUpdateE( aProton );
365  targetHasChanged = true;
366  //
367  // correct the strangeness by replacing a pi- by a kaon-
368  //
369  vec.Initialize( 1 );
371  p->SetDefinition( aKaonMinus );
372  (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
373  vec.SetElement( vecLen++, p );
374  --nneg;
375  }
376  }
377  else if( npos == nneg )
378  {
379  if( G4UniformRand() >= 0.5 )
380  {
381  currentParticle.SetDefinitionAndUpdateE( aXiMinus );
382  incidentHasChanged = true;
383  targetParticle.SetDefinitionAndUpdateE( aProton );
384  targetHasChanged = true;
385  }
386  }
387  else
388  {
389  currentParticle.SetDefinitionAndUpdateE( aXiMinus );
390  incidentHasChanged = true;
391  }
392  }
393  SetUpPions(npos, nneg, nzero, vec, vecLen);
394  return;
395 }
396 
397  /* end of file */
398