Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4LEOmegaMinusInelastic.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 // Hadronic Process: OmegaMinus Inelastic Process
29 // J.L. Chuma, TRIUMF, 20-Feb-1997
30 // Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
31 
33 #include "G4PhysicalConstants.hh"
34 #include "G4SystemOfUnits.hh"
35 #include "Randomize.hh"
36 
38 {
39  outFile << "G4LEOmegaMinusInelastic is one of the Low Energy Parameterized\n"
40  << "(LEP) models used to implement inelastic Omega- scattering from\n"
41  << "nuclei. It is a re-engineered version of the GHEISHA code of\n"
42  << "H. Fesefeldt. It divides the initial collision products into\n"
43  << "backward- and forward-going clusters which are then decayed\n"
44  << "into final state hadrons. The model does not conserve energy\n"
45  << "on an event-by-event basis. It may be applied to Omega- with\n"
46  << "initial energies between 0 and 25 GeV.\n";
47 }
48 
49 
52  G4Nucleus& targetNucleus)
53 {
54  const G4HadProjectile *originalIncident = &aTrack;
55  if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
59  return &theParticleChange;
60  }
61 
62  // create the target particle
63  G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
64  G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
65 
66  if (verboseLevel > 1) {
67  const G4Material *targetMaterial = aTrack.GetMaterial();
68  G4cout << "G4LEOmegaMinusInelastic::ApplyYourself called" << G4endl;
69  G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy() << "MeV, ";
70  G4cout << "target material = " << targetMaterial->GetName() << ", ";
71  G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
72  << G4endl;
73  }
74  G4ReactionProduct currentParticle( const_cast<G4ParticleDefinition *>(originalIncident->GetDefinition() ));
75  currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
76  currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
77 
78  // Fermi motion and evaporation
79  // As of Geant3, the Fermi energy calculation had not been Done
80  G4double ek = originalIncident->GetKineticEnergy();
81  G4double amas = originalIncident->GetDefinition()->GetPDGMass();
82 
83  G4double tkin = targetNucleus.Cinema(ek);
84  ek += tkin;
85  currentParticle.SetKineticEnergy(ek);
86  G4double et = ek + amas;
87  G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
88  G4double pp = currentParticle.GetMomentum().mag();
89  if (pp > 0.0) {
90  G4ThreeVector momentum = currentParticle.GetMomentum();
91  currentParticle.SetMomentum( momentum * (p/pp) );
92  }
93 
94  // calculate black track energies
95  tkin = targetNucleus.EvaporationEffects( ek );
96  ek -= tkin;
97  currentParticle.SetKineticEnergy( ek );
98  et = ek + amas;
99  p = std::sqrt( std::abs((et-amas)*(et+amas)) );
100  pp = currentParticle.GetMomentum().mag();
101  if (pp > 0.0) {
102  G4ThreeVector momentum = currentParticle.GetMomentum();
103  currentParticle.SetMomentum( momentum * (p/pp) );
104  }
105 
106  G4ReactionProduct modifiedOriginal = currentParticle;
107 
108  currentParticle.SetSide(1); // incident always goes in forward hemisphere
109  targetParticle.SetSide(-1); // target always goes in backward hemisphere
110  G4bool incidentHasChanged = false;
111  G4bool targetHasChanged = false;
112  G4bool quasiElastic = false;
113  G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
114  G4int vecLen = 0;
115  vec.Initialize( 0 );
116 
117  const G4double cutOff = 0.1*MeV;
118  if (currentParticle.GetKineticEnergy() > cutOff)
119  Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
120  incidentHasChanged, targetHasChanged, quasiElastic);
121 
122  CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
123  modifiedOriginal, targetNucleus, currentParticle,
124  targetParticle, incidentHasChanged, targetHasChanged,
125  quasiElastic);
126 
127  SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
128 
129  if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
130 
131  delete originalTarget;
132  return &theParticleChange;
133 }
134 
135 
136 void G4LEOmegaMinusInelastic::Cascade(
138  G4int& vecLen,
139  const G4HadProjectile *originalIncident,
140  G4ReactionProduct &currentParticle,
141  G4ReactionProduct &targetParticle,
142  G4bool &incidentHasChanged,
143  G4bool &targetHasChanged,
144  G4bool &quasiElastic)
145 {
146  // derived from original FORTRAN code CASOM by H. Fesefeldt (31-Jan-1989)
147  //
148  // OmegaMinus undergoes interaction with nucleon within a nucleus. Check if it is
149  // energetically possible to produce pions/kaons. In not, assume nuclear excitation
150  // occurs and input particle is degraded in energy. No other particles are produced.
151  // If reaction is possible, find the correct number of pions/protons/neutrons
152  // produced using an interpolation to multiplicity data. Replace some pions or
153  // protons/neutrons by kaons or strange baryons according to the average
154  // multiplicity per Inelastic reaction.
155  //
156  const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass();
157  const G4double etOriginal = originalIncident->GetTotalEnergy();
158  const G4double targetMass = targetParticle.GetMass();
159  G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
160  targetMass*targetMass +
161  2.0*targetMass*etOriginal );
162  G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
163  if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass() )
164  {
165  quasiElastic = true;
166  return;
167  }
168  static G4bool first = true;
169  const G4int numMul = 1200;
170  const G4int numSec = 60;
171  static G4double protmul[numMul], protnorm[numSec]; // proton constants
172  static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
173  // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
174  G4int counter, nt=0, npos=0, nneg=0, nzero=0;
175  G4double test;
176  const G4double c = 1.25;
177  const G4double b[] = { 0.70, 0.70 };
178  if( first ) // compute normalization constants, this will only be Done once
179  {
180  first = false;
181  G4int i;
182  for( i=0; i<numMul; ++i )protmul[i] = 0.0;
183  for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
184  counter = -1;
185  for( npos=0; npos<(numSec/3); ++npos )
186  {
187  for( nneg=std::max(0,npos-1); nneg<=(npos+1); ++nneg )
188  {
189  for( nzero=0; nzero<numSec/3; ++nzero )
190  {
191  if( ++counter < numMul )
192  {
193  nt = npos+nneg+nzero;
194  if( nt > 0 )
195  {
196  protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
197  protnorm[nt-1] += protmul[counter];
198  }
199  }
200  }
201  }
202  }
203  for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
204  for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
205  counter = -1;
206  for( npos=0; npos<numSec/3; ++npos )
207  {
208  for( nneg=npos; nneg<=(npos+2); ++nneg )
209  {
210  for( nzero=0; nzero<numSec/3; ++nzero )
211  {
212  if( ++counter < numMul )
213  {
214  nt = npos+nneg+nzero;
215  if( (nt>0) && (nt<=numSec) )
216  {
217  neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
218  neutnorm[nt-1] += neutmul[counter];
219  }
220  }
221  }
222  }
223  }
224  for( i=0; i<numSec; ++i )
225  {
226  if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
227  if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
228  }
229  } // end of initialization
230 
231  const G4double expxu = 82.; // upper bound for arg. of exp
232  const G4double expxl = -expxu; // lower bound for arg. of exp
239 
240  // energetically possible to produce pion(s) --> inelastic scattering
241 
242  G4double n, anpn;
243  GetNormalizationConstant( availableEnergy, n, anpn );
244  G4double ran = G4UniformRand();
245  G4double dum, excs = 0.0;
246  if( targetParticle.GetDefinition() == aProton )
247  {
248  counter = -1;
249  for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
250  {
251  for( nneg=std::max(0,npos-1); nneg<=(npos+1) && ran>=excs; ++nneg )
252  {
253  for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
254  {
255  if( ++counter < numMul )
256  {
257  nt = npos+nneg+nzero;
258  if( nt > 0 )
259  {
260  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
261  dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
262  if( std::fabs(dum) < 1.0 )
263  {
264  if( test >= 1.0e-10 )excs += dum*test;
265  }
266  else
267  excs += dum*test;
268  }
269  }
270  }
271  }
272  }
273  if( ran >= excs ) // 3 previous loops continued to the end
274  {
275  quasiElastic = true;
276  return;
277  }
278  npos--; nneg--; nzero--;
279  }
280  else // target must be a neutron
281  {
282  counter = -1;
283  for( npos=0; npos<numSec/3 && ran>=excs; ++npos )
284  {
285  for( nneg=npos; nneg<=(npos+2) && ran>=excs; ++nneg )
286  {
287  for( nzero=0; nzero<numSec/3 && ran>=excs; ++nzero )
288  {
289  if( ++counter < numMul )
290  {
291  nt = npos+nneg+nzero;
292  if( (nt>=1) && (nt<=numSec) )
293  {
294  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
295  dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
296  if( std::fabs(dum) < 1.0 )
297  {
298  if( test >= 1.0e-10 )excs += dum*test;
299  }
300  else
301  excs += dum*test;
302  }
303  }
304  }
305  }
306  }
307  if( ran >= excs ) // 3 previous loops continued to the end
308  {
309  quasiElastic = true;
310  return;
311  }
312  npos--; nneg--; nzero--;
313  }
314  // number of secondary mesons determined by kno distribution
315  // check for total charge of final state mesons to determine
316  // the kind of baryons to be produced, taking into account
317  // charge and strangeness conservation
318  //
319  G4int nvefix = 0;
320  if( targetParticle.GetDefinition() == aProton )
321  {
322  if( nneg > npos )
323  {
324  if( nneg == npos+1 )
325  {
326  currentParticle.SetDefinitionAndUpdateE( aXiZero );
327  nvefix = 1;
328  }
329  else
330  {
331  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
332  nvefix = 2;
333  }
334  incidentHasChanged = true;
335  }
336  else if( nneg < npos )
337  {
338  targetParticle.SetDefinitionAndUpdateE( aNeutron );
339  targetHasChanged = true;
340  }
341  }
342  else // target is a neutron
343  {
344  if( npos+1 < nneg )
345  {
346  if( nneg == npos+2 )
347  {
348  currentParticle.SetDefinitionAndUpdateE( aXiZero );
349  incidentHasChanged = true;
350  nvefix = 1;
351  }
352  else // charge mismatch
353  {
354  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
355  incidentHasChanged = true;
356  nvefix = 2;
357  }
358  targetParticle.SetDefinitionAndUpdateE( aProton );
359  targetHasChanged = true;
360  }
361  else if( nneg == npos+1 )
362  {
363  targetParticle.SetDefinitionAndUpdateE( aProton );
364  targetHasChanged = true;
365  }
366  }
367  SetUpPions( npos, nneg, nzero, vec, vecLen );
368  for( G4int i=0; i<vecLen && nvefix>0; ++i )
369  {
370  if( vec[i]->GetDefinition() == aPiMinus )
371  {
372  if( nvefix >= 1 )vec[i]->SetDefinitionAndUpdateE( aKaonMinus );
373  --nvefix;
374  }
375  }
376  return;
377 }
378 
379  /* end of file */
380