Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4LEAntiOmegaMinusInelastic.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 // Hadronic Process: AntiOmegaMinus Inelastic Process
29 // J.L. Chuma, TRIUMF, 20-Feb-1997
30 // Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
31 //
32 // NOTE: The FORTRAN version of the cascade, CASAOM, simply called the
33 // routine for the OmegaMinus particle. Hence, the Cascade function
34 // below is just a copy of the Cascade from the OmegaMinus particle.
35 
37 #include "G4PhysicalConstants.hh"
38 #include "G4SystemOfUnits.hh"
39 #include "Randomize.hh"
40 
42 {
43  outFile << "G4LEAntiOmegaMinusInelastic is one of the Low Energy\n"
44  << "Parameterized (LEP) models used to implement inelastic\n"
45  << "antiOmega- scattering from nuclei. It is a re-engineered\n"
46  << "version of the GHEISHA code of H. Fesefeldt. It divides the\n"
47  << "initial collision products into backward- and forward-going\n"
48  << "clusters which are then decayed into final state hadrons. The\n"
49  << "model does not conserve energy on an event-by-event basis. It\n"
50  << "may be applied to antiOmega- with initial energies between 0\n"
51  << "and 25 GeV.\n";
52 }
53 
56  G4Nucleus& targetNucleus)
57 {
58  const G4HadProjectile* originalIncident = &aTrack;
59  if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
63  return &theParticleChange;
64  }
65 
66  // create the target particle
67  G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
68 
69  if (verboseLevel > 1) {
70  const G4Material *targetMaterial = aTrack.GetMaterial();
71  G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
72  G4cout << "target material = " << targetMaterial->GetName() << ", ";
73  G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
74  << G4endl;
75  }
76 
77  // Fermi motion and evaporation
78  // As of Geant3, the Fermi energy calculation had not been Done
79  G4double ek = originalIncident->GetKineticEnergy()/MeV;
80  G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
81  G4ReactionProduct modifiedOriginal;
82  modifiedOriginal = *originalIncident;
83 
84  G4double tkin = targetNucleus.Cinema( ek );
85  ek += tkin;
86  modifiedOriginal.SetKineticEnergy( ek*MeV );
87  G4double et = ek + amas;
88  G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
89  G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
90  if (pp > 0.0) {
91  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
92  modifiedOriginal.SetMomentum( momentum * (p/pp) );
93  }
94 
95  // calculate black track energies
96  tkin = targetNucleus.EvaporationEffects( ek );
97  ek -= tkin;
98  modifiedOriginal.SetKineticEnergy( ek*MeV );
99  et = ek + amas;
100  p = std::sqrt( std::abs((et-amas)*(et+amas)) );
101  pp = modifiedOriginal.GetMomentum().mag()/MeV;
102  if (pp > 0.0) {
103  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
104  modifiedOriginal.SetMomentum( momentum * (p/pp) );
105  }
106  G4ReactionProduct currentParticle = modifiedOriginal;
107  G4ReactionProduct targetParticle;
108  targetParticle = *originalTarget;
109  currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
110  targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
111  G4bool incidentHasChanged = false;
112  G4bool targetHasChanged = false;
113  G4bool quasiElastic = false;
114  G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
115  G4int vecLen = 0;
116  vec.Initialize( 0 );
117 
118  const G4double cutOff = 0.1;
119  const G4double anni = std::min( 1.3*currentParticle.GetTotalMomentum()/GeV, 0.4 );
120 
121  if ((currentParticle.GetKineticEnergy()/MeV > cutOff) || (G4UniformRand() > anni) )
122  Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
123  incidentHasChanged, targetHasChanged, quasiElastic);
124 
125  CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
126  modifiedOriginal, targetNucleus, currentParticle,
127  targetParticle, incidentHasChanged, targetHasChanged,
128  quasiElastic);
129 
130  SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
131 
132  if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
133 
134  delete originalTarget;
135  return &theParticleChange;
136 }
137 
138 void G4LEAntiOmegaMinusInelastic::Cascade(
140  G4int& vecLen,
141  const G4HadProjectile* originalIncident,
142  G4ReactionProduct& currentParticle,
143  G4ReactionProduct& targetParticle,
144  G4bool& incidentHasChanged,
145  G4bool& targetHasChanged,
146  G4bool& quasiElastic)
147 {
148  // derived from original FORTRAN code CASOM by H. Fesefeldt (31-Jan-1989)
149  //
150  // AntiOmegaMinus undergoes interaction with nucleon within a nucleus. Check if it is
151  // energetically possible to produce pions/kaons. In not, assume nuclear excitation
152  // occurs and input particle is degraded in energy. No other particles are produced.
153  // If reaction is possible, find the correct number of pions/protons/neutrons
154  // produced using an interpolation to multiplicity data. Replace some pions or
155  // protons/neutrons by kaons or strange baryons according to the average
156  // multiplicity per Inelastic reaction.
157 
158  const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
159  const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
160  const G4double targetMass = targetParticle.GetMass()/MeV;
161  G4double centerofmassEnergy = std::sqrt(mOriginal*mOriginal +
162  targetMass*targetMass +
163  2.0*targetMass*etOriginal);
164  G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
165  if (availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV) {
166  // not energetically possible to produce pion(s)
167  quasiElastic = true;
168  return;
169  }
170  static G4bool first = true;
171  const G4int numMul = 1200;
172  const G4int numSec = 60;
173  static G4double protmul[numMul], protnorm[numSec]; // proton constants
174  static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
175 
176  // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
177  G4int counter, nt=0;
178  G4int npos = 0, nneg = 0, nzero = 0;
179  G4double test;
180  const G4double c = 1.25;
181  const G4double b[] = { 0.7, 0.7 };
182  if (first) { // Computation of normalization constants will only be done once
183  first = false;
184  G4int i;
185  for (i = 0; i < numMul; ++i) protmul[i] = 0.0;
186  for (i = 0; i < numSec; ++i) protnorm[i] = 0.0;
187  counter = -1;
188  for (npos = 0; npos < (numSec/3); ++npos) {
189  for (nneg = std::max(0,npos-1); nneg <= (npos+1); ++nneg) {
190  for (nzero = 0; nzero < numSec/3; ++nzero) {
191  if (++counter < numMul) {
192  nt = npos+nneg+nzero;
193  if (nt > 0 && nt <= numSec) {
194  protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
195  protnorm[nt-1] += protmul[counter];
196  }
197  }
198  }
199  }
200  }
201 
202  for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
203  for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
204  counter = -1;
205  for (npos = 0; npos < numSec/3; ++npos) {
206  for (nneg = npos; nneg <= (npos+2); ++nneg) {
207  for (nzero = 0; nzero < numSec/3; ++nzero) {
208  if (++counter < numMul) {
209  nt = npos+nneg+nzero;
210  if ( nt>0 && nt<=numSec ) {
211  neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
212  neutnorm[nt-1] += neutmul[counter];
213  }
214  }
215  }
216  }
217  }
218  for (i = 0; i < numSec; ++i) {
219  if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
220  if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
221  }
222  } // end of initialization
223 
224  const G4double expxu = 82.; // upper bound for arg. of exp
225  const G4double expxl = -expxu; // lower bound for arg. of exp
231  G4double n, anpn;
232  GetNormalizationConstant( availableEnergy, n, anpn );
233  G4double ran = G4UniformRand();
234  G4double dum, excs = 0.0;
235  G4int nvefix = 0;
236  if (targetParticle.GetDefinition() == aProton) {
237  counter = -1;
238  for (npos = 0; npos < numSec/3 && ran>=excs; ++npos) {
239  for (nneg = std::max(0,npos-1); nneg <= (npos+1) && ran>=excs; ++nneg) {
240  for (nzero = 0; nzero < numSec/3 && ran>=excs; ++nzero) {
241  if ( ++counter < numMul ) {
242  nt = npos+nneg+nzero;
243  if (nt > 0 && nt <= numSec) {
244  test = std::exp(std::min(expxu,
245  std::max(expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
246  dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
247  if (std::fabs(dum) < 1.0) {
248  if( test >= 1.0e-10 )excs += dum*test;
249  }
250  else
251  excs += dum*test;
252  }
253  }
254  }
255  }
256  }
257  if (ran >= excs) {
258  // 3 previous loops continued to the end
259  quasiElastic = true;
260  return;
261  }
262  npos--; nneg--; nzero--;
263 
264  // number of secondary mesons determined by kno distribution
265  // check for total charge of final state mesons to determine
266  // the kind of baryons to be produced, taking into account
267  // charge and strangeness conservation
268 
269  if (npos < nneg) {
270  if (npos+1 == nneg) {
271  currentParticle.SetDefinitionAndUpdateE(aXiZero);
272  incidentHasChanged = true;
273  nvefix = 1;
274  } else {
275  // charge mismatch
276  currentParticle.SetDefinitionAndUpdateE(aSigmaPlus);
277  incidentHasChanged = true;
278  nvefix = 2;
279  }
280  } else if (npos > nneg) {
281  targetParticle.SetDefinitionAndUpdateE(aNeutron);
282  targetHasChanged = true;
283  }
284  } else {
285  // target must be a neutron
286  counter = -1;
287  for (npos = 0; npos < numSec/3 && ran >= excs; ++npos) {
288  for (nneg = npos; nneg <= (npos+2) && ran>=excs; ++nneg) {
289  for (nzero = 0; nzero < numSec/3 && ran>=excs; ++nzero) {
290  if (++counter < numMul) {
291  nt = npos+nneg+nzero;
292  if (nt > 0 && nt <= numSec) {
293  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
294  dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
295  if( std::fabs(dum) < 1.0 )
296  {
297  if( test >= 1.0e-10 )excs += dum*test;
298  }
299  else
300  excs += dum*test;
301  }
302  }
303  }
304  }
305  }
306  if (ran >= excs) {
307  // 3 previous loops continued to the end
308  quasiElastic = true;
309  return;
310  }
311  npos--; nneg--; nzero--;
312  if (npos+1 < nneg) {
313  if( npos+2 == nneg) {
314  currentParticle.SetDefinitionAndUpdateE( aXiZero );
315  incidentHasChanged = true;
316  nvefix = 1;
317  } else {
318  // charge mismatch
319  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
320  incidentHasChanged = true;
321  nvefix = 2;
322  }
323  targetParticle.SetDefinitionAndUpdateE( aProton );
324  targetHasChanged = true;
325  } else if (npos+1 == nneg) {
326  targetParticle.SetDefinitionAndUpdateE( aProton );
327  targetHasChanged = true;
328  }
329  }
330 
331  SetUpPions(npos, nneg, nzero, vec, vecLen);
332  for (G4int i = 0; i < vecLen && nvefix > 0; ++i) {
333  if (vec[i]->GetDefinition() == G4PionMinus::PionMinus() ) {
334 
335  // correct the strangeness by replacing a pi- by a kaon-
336  if (nvefix >= 1) vec[i]->SetDefinitionAndUpdateE(aKaonMinus);
337  --nvefix;
338  }
339  }
340  return;
341 }
342 
343  /* end of file */
344