Geant4
9.6.p02
Main Page
Related Pages
Modules
Namespaces
Classes
Files
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
geant4_9_6_p02
source
global
HEPNumerics
include
G4Integrator.hh
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
// $Id$
28
//
29
// Class description:
30
//
31
// Template class collecting integrator methods for generic funtions.
32
33
// History:
34
//
35
// 04.09.99 V.Grichine, first implementation based on G4SimpleIntegration class
36
// H.P.Wellisch, G.Cosmo, and E.Cherniaev advises
37
// 08.09.99 V.Grichine, methods involving orthogonal polynomials
38
//
39
40
41
#ifndef G4INTEGRATOR_HH
42
#define G4INTEGRATOR_HH 1
43
44
#include "
G4Types.hh
"
45
#include <cmath>
46
#include <
CLHEP/Units/PhysicalConstants.h
>
47
48
template
<
class
T,
class
F>
49
class
G4Integrator
50
{
51
public
:
// with description
52
53
G4Integrator
(){;}
54
~G4Integrator
(){;}
55
56
G4double
Simpson
( T& typeT, F
f
,
G4double
a
,
G4double
b
,
G4int
n
) ;
57
G4double
Simpson
( T* ptrT, F
f
,
G4double
a
,
G4double
b
,
G4int
n
) ;
58
G4double
Simpson
(
G4double
(*
f
)(
G4double
),
59
G4double
a
,
G4double
b
,
G4int
n
) ;
60
// Simpson integration method
61
62
G4double
AdaptiveGauss
( T& typeT, F
f
,
G4double
a
,
G4double
b
,
G4double
e
) ;
63
G4double
AdaptiveGauss
( T* ptrT, F
f
,
G4double
a
,
G4double
b
,
G4double
e
) ;
64
G4double
AdaptiveGauss
(
G4double
(*
f
)(
G4double
),
65
G4double
a
,
G4double
b
,
G4double
e
) ;
66
// Adaptive Gauss method
67
68
69
// Integration methods involving orthogohol polynomials
70
71
G4double
Legendre
( T& typeT, F
f
,
G4double
a
,
G4double
b
,
G4int
n
) ;
72
G4double
Legendre
( T* ptrT, F
f
,
G4double
a
,
G4double
b
,
G4int
n
) ;
73
G4double
Legendre
(
G4double
(*
f
)(
G4double
),
G4double
a
,
G4double
b
,
G4int
n
) ;
74
//
75
// Methods involving Legendre polynomials
76
77
G4double
Legendre10
( T& typeT, F
f
,
G4double
a
,
G4double
b
) ;
78
G4double
Legendre10
( T* ptrT, F
f
,
G4double
a
,
G4double
b
) ;
79
G4double
Legendre10
(
G4double
(*
f
)(
G4double
),
G4double
a
,
G4double
b
) ;
80
//
81
// Legendre10 is very fast and accurate enough
82
83
G4double
Legendre96
( T& typeT, F
f
,
G4double
a
,
G4double
b
) ;
84
G4double
Legendre96
( T* ptrT, F
f
,
G4double
a
,
G4double
b
) ;
85
G4double
Legendre96
(
G4double
(*
f
)(
G4double
),
G4double
a
,
G4double
b
) ;
86
//
87
// Legendre96 is very accurate and fast enough
88
89
G4double
Chebyshev
( T& typeT, F
f
,
G4double
a
,
G4double
b
,
G4int
n
) ;
90
G4double
Chebyshev
( T* ptrT, F
f
,
G4double
a
,
G4double
b
,
G4int
n
) ;
91
G4double
Chebyshev
(
G4double
(*
f
)(
G4double
),
G4double
a
,
G4double
b
,
G4int
n
) ;
92
//
93
// Methods involving Chebyshev polynomials
94
95
G4double
Laguerre
( T& typeT, F
f
,
G4double
alpha
,
G4int
n
) ;
96
G4double
Laguerre
( T* ptrT, F
f
,
G4double
alpha
,
G4int
n
) ;
97
G4double
Laguerre
(
G4double
(*
f
)(
G4double
),
G4double
alpha
,
G4int
n
) ;
98
//
99
// Method involving Laguerre polynomials
100
101
G4double
Hermite
( T& typeT, F
f
,
G4int
n
) ;
102
G4double
Hermite
( T* ptrT, F
f
,
G4int
n
) ;
103
G4double
Hermite
(
G4double
(*
f
)(
G4double
),
G4int
n
) ;
104
//
105
// Method involving Hermite polynomials
106
107
G4double
Jacobi
( T& typeT, F
f
,
G4double
alpha
,
G4double
beta,
G4int
n
) ;
108
G4double
Jacobi
( T* ptrT, F
f
,
G4double
alpha
,
G4double
beta,
G4int
n
) ;
109
G4double
Jacobi
(
G4double
(*
f
)(
G4double
),
G4double
alpha
,
110
G4double
beta,
G4int
n
) ;
111
// Method involving Jacobi polynomials
112
113
114
protected
:
115
116
// Auxiliary function for adaptive Gauss method
117
118
G4double
Gauss
( T& typeT, F
f
,
G4double
a
,
G4double
b
) ;
119
G4double
Gauss
( T* ptrT, F
f
,
G4double
a
,
G4double
b
) ;
120
G4double
Gauss
(
G4double
(*
f
)(
G4double
),
G4double
a
,
G4double
b
) ;
121
122
void
AdaptGauss
( T& typeT, F
f
,
G4double
a
,
G4double
b
,
123
G4double
e
,
G4double
& sum,
G4int
&
n
) ;
124
void
AdaptGauss
( T* typeT, F
f
,
G4double
a
,
G4double
b
,
125
G4double
e
,
G4double
& sum,
G4int
&
n
) ;
126
void
AdaptGauss
(
G4double
(*
f
)(
G4double
),
G4double
a
,
G4double
b
,
127
G4double
e
,
G4double
& sum,
G4int
&
n
) ;
128
129
G4double
GammaLogarithm
(
G4double
xx
) ;
130
131
132
} ;
133
134
#include "G4Integrator.icc"
135
136
#endif
Generated on Sat May 25 2013 14:33:17 for Geant4 by
1.8.4