Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4He3EvaporationProbability.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 // J.M. Quesada (August2008). Based on:
29 //
30 // Hadronic Process: Nuclear De-excitations
31 // by V. Lara (Oct 1998)
32 //
33 // Modified:
34 // 03-09-2008 J.M. Quesada for external choice of inverse cross section option
35 // 17-11-2010 V.Ivanchenko integer Z and A
36 
38 #include "G4SystemOfUnits.hh"
39 
41  G4EvaporationProbability(3,2,2,&theCoulombBarrier) // A,Z,Gamma,&theCoulombBarrier
42 {
43  ResidualA = ResidualZ = theA = theZ = FragmentA = 0;
44  ResidualAthrd = FragmentAthrd = 0.0;
45 }
46 
48 {}
49 
50 G4double G4He3EvaporationProbability::CalcAlphaParam(const G4Fragment & fragment)
51  { return 1.0 + CCoeficient(fragment.GetZ_asInt()-GetZ());}
52 
53 G4double G4He3EvaporationProbability::CalcBetaParam(const G4Fragment & )
54  { return 0.0; }
55 
56 
57 G4double G4He3EvaporationProbability::CCoeficient(G4int aZ)
58 {
59  // Data comes from
60  // Dostrovsky, Fraenkel and Friedlander
61  // Physical Review, vol 116, num. 3 1959
62  //
63  // const G4int size = 5;
64  // G4double Zlist[5] = { 10.0, 20.0, 30.0, 50.0, 70.0};
65  // G4double Calpha[5] = { 0.10, 0.10, 0.10, 0.08, 0.06};
66  // C for He3 is equal to C for alpha times 4/3
67  G4double C = 0.0;
68 
69  if (aZ <= 30)
70  {
71  C = 0.10;
72  }
73  else if (aZ <= 50)
74  {
75  C = 0.1 - (aZ - 30)*0.001;
76  }
77  else if (aZ < 70)
78  {
79  C = 0.08 - (aZ - 50)*0.001;
80  }
81  else
82  {
83  C = 0.06;
84  }
85  return C*(4.0/3.0);
86 }
87 
89 //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections
90 //OPT=0 Dostrovski's parameterization
91 //OPT=1,2 Chatterjee's paramaterization
92 //OPT=3,4 Kalbach's parameterization
93 //
94 G4double
95 G4He3EvaporationProbability::CrossSection(const G4Fragment & fragment, G4double K)
96 {
97 
98  theA=GetA();
99  theZ=GetZ();
100  ResidualA=fragment.GetA_asInt()-theA;
101  ResidualZ=fragment.GetZ_asInt()-theZ;
102 
103  ResidualAthrd=fG4pow->Z13(ResidualA);
104  FragmentA=fragment.GetA_asInt();
105  FragmentAthrd=fG4pow->Z13(FragmentA);
106 
107  if (OPTxs==0) {std::ostringstream errOs;
108  errOs << "We should'n be here (OPT =0) at evaporation cross section calculation (He3's)!!"
109  <<G4endl;
110  throw G4HadronicException(__FILE__, __LINE__, errOs.str());
111  return 0.;}
112  if( OPTxs==1 || OPTxs==2) return G4He3EvaporationProbability::GetOpt12( K);
113  else if (OPTxs==3 || OPTxs==4) return G4He3EvaporationProbability::GetOpt34( K);
114  else{
115  std::ostringstream errOs;
116  errOs << "BAD He3's CROSS SECTION OPTION AT EVAPORATION!!" <<G4endl;
117  throw G4HadronicException(__FILE__, __LINE__, errOs.str());
118  return 0.;
119  }
120 }
121 
122 //********************* OPT=1,2 : Chatterjee's cross section *****************
123 //(fitting to cross section from Bechetti & Greenles OM potential)
124 
125 G4double G4He3EvaporationProbability::GetOpt12(const G4double K)
126 {
127  G4double Kc = K;
128 
129  // JMQ xsec is set constat above limit of validity
130  if (K > 50*MeV) { Kc = 50*MeV; }
131 
132  G4double landa ,mu ,nu ,p , Ec,q,r,ji,xs;
133 
134  G4double p0 = -3.06;
135  G4double p1 = 278.5;
136  G4double p2 = -1389.;
137  G4double landa0 = -0.00535;
138  G4double landa1 = -11.16;
139  G4double mum0 = 555.5;
140  G4double mu1 = 0.40;
141  G4double nu0 = 687.4;
142  G4double nu1 = -476.3;
143  G4double nu2 = 0.509;
144  G4double delta=1.2;
145 
146  Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
147  p = p0 + p1/Ec + p2/(Ec*Ec);
148  landa = landa0*ResidualA + landa1;
149 
150  G4double resmu1 = fG4pow->powZ(ResidualA,mu1);
151  mu = mum0*resmu1;
152  nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
153  q = landa - nu/(Ec*Ec) - 2*p*Ec;
154  r = mu + 2*nu/Ec + p*(Ec*Ec);
155 
156  ji=std::max(Kc,Ec);
157  if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
158  else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
159 
160  if (xs <0.0) {xs=0.0;}
161 
162  return xs;
163 
164 }
165 
166 // *********** OPT=3,4 : Kalbach's cross sections (from PRECO code)*************
167 G4double G4He3EvaporationProbability::GetOpt34(const G4double K)
168 //c ** 3he from o.m. of gibson et al
169 {
170  G4double landa, mu, nu, p , signor(1.),sig;
171  G4double ec,ecsq,xnulam,etest(0.),a;
172  G4double b,ecut,cut,ecut2,geom,elab;
173 
174  G4double flow = 1.e-18;
175  G4double spill= 1.e+18;
176 
177  G4double p0 = -2.88;
178  G4double p1 = 205.6;
179  G4double p2 = -1487.;
180  G4double landa0 = 0.00459;
181  G4double landa1 = -8.93;
182  G4double mum0 = 611.2;
183  G4double mu1 = 0.35;
184  G4double nu0 = 473.8;
185  G4double nu1 = -468.2;
186  G4double nu2 = -2.225;
187 
188  G4double ra=0.80;
189 
190  //JMQ 13/02/09 increase of reduced radius to lower the barrier
191  // ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
192  ec = 1.44 * theZ * ResidualZ / (1.7*ResidualAthrd+ra);
193  ecsq = ec * ec;
194  p = p0 + p1/ec + p2/ecsq;
195  landa = landa0*ResidualA + landa1;
196  a = fG4pow->powZ(ResidualA,mu1);
197  mu = mum0 * a;
198  nu = a* (nu0+nu1*ec+nu2*ecsq);
199  xnulam = nu / landa;
200  if (xnulam > spill) { xnulam=0.; }
201  if (xnulam >= flow) { etest = 1.2 *std::sqrt(xnulam); }
202 
203  a = -2.*p*ec + landa - nu/ecsq;
204  b = p*ecsq + mu + 2.*nu/ec;
205  ecut = 0.;
206  cut = a*a - 4.*p*b;
207  if (cut > 0.) ecut = std::sqrt(cut);
208  ecut = (ecut-a) / (p+p);
209  ecut2 = ecut;
210  //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
211  // ecut<0 means that there is no cut with energy axis, i.e. xs is set
212  // to 0 bellow minimum
213  // if (cut < 0.) ecut2 = ecut - 2.;
214  if (cut < 0.) { ecut2 = ecut; }
215  elab = K * FragmentA /G4double(ResidualA);
216  sig = 0.;
217 
218  if (elab <= ec) { //start for E<Ec
219  if (elab > ecut2) { sig = (p*elab*elab+a*elab+b) * signor; }
220  } //end for E<Ec
221  else { //start for E>Ec
222  sig = (landa*elab+mu+nu/elab) * signor;
223  geom = 0.;
224  if (xnulam < flow || elab < etest) { return sig; }
225  geom = std::sqrt(theA*K);
226  geom = 1.23*ResidualAthrd + ra + 4.573/geom;
227  geom = 31.416 * geom * geom;
228  sig = std::max(geom,sig);
229  } //end for E>Ec
230  return sig;
231 
232 }