43 outFile <<
"G4HEXiZeroInelastic is one of the High Energy\n"
44 <<
"Parameterized (HEP) models used to implement inelastic\n"
45 <<
"Xi0 scattering from nuclei. It is a re-engineered\n"
46 <<
"version of the GHEISHA code of H. Fesefeldt. It divides the\n"
47 <<
"initial collision products into backward- and forward-going\n"
48 <<
"clusters which are then decayed into final state hadrons.\n"
49 <<
"The model does not conserve energy on an event-by-event\n"
50 <<
"basis. It may be applied to Xi0 with initial energies\n"
75 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
77 if (incidentKineticEnergy < 1.)
78 G4cout <<
"GHEXiZeroInelastic: incident energy < 1 GeV" <<
G4endl;
81 G4cout <<
"G4HEXiZeroInelastic::ApplyYourself" <<
G4endl;
83 <<
"mass " << incidentMass
84 <<
"kinetic energy " << incidentKineticEnergy
86 G4cout <<
"target material with (A,Z) = ("
87 << atomicWeight <<
"," << atomicNumber <<
")" <<
G4endl;
91 atomicWeight, atomicNumber);
93 G4cout <<
"nuclear inelasticity = " << inelasticity <<
G4endl;
95 incidentKineticEnergy -= inelasticity;
101 atomicWeight, atomicNumber,
103 excitationEnergyDTA);
105 G4cout <<
"nuclear excitation = " << excitation << excitationEnergyGNP
106 << excitationEnergyDTA <<
G4endl;
108 incidentKineticEnergy -= excitation;
109 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
122 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
123 + targetMass*targetMass
124 + 2.0*targetMass*incidentTotalEnergy);
125 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
131 G4cout <<
"ApplyYourself: CallFirstIntInCascade for particle "
132 << incidentCode <<
G4endl;
134 G4bool successful =
false;
137 incidentParticle, targetParticle, atomicWeight);
140 G4cout <<
"ApplyYourself::StrangeParticlePairProduction" <<
G4endl;
142 if ((
vecLength > 0) && (availableEnergy > 1.))
145 incidentParticle, targetParticle);
148 excitationEnergyGNP, excitationEnergyDTA,
149 incidentParticle, targetParticle,
150 atomicWeight, atomicNumber);
153 excitationEnergyGNP, excitationEnergyDTA,
154 incidentParticle, targetParticle,
155 atomicWeight, atomicNumber);
158 excitationEnergyGNP, excitationEnergyDTA,
159 incidentParticle, targetParticle,
160 atomicWeight, atomicNumber);
164 excitationEnergyGNP, excitationEnergyDTA,
165 incidentParticle, targetParticle,
166 atomicWeight, atomicNumber);
169 excitationEnergyGNP, excitationEnergyDTA,
170 incidentParticle, targetParticle,
171 atomicWeight, atomicNumber);
175 atomicWeight, atomicNumber);
178 G4cout <<
"GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
206 static const G4double expxl = -expxu;
212 static const G4int numMul = 1200;
213 static const G4int numSec = 60;
219 static G4bool first =
true;
220 static G4double protmul[numMul], protnorm[numSec];
221 static G4double neutmul[numMul], neutnorm[numSec];
226 G4int i, counter,
nt, npos, nneg, nzero;
231 for (i = 0; i < numMul; i++) protmul[i] = 0.0;
232 for (i = 0; i < numSec; i++) protnorm[i] = 0.0;
234 for (npos = 0; npos < (numSec/3); npos++) {
235 for (nneg = std::max(0,npos-2); nneg <= npos; nneg++) {
236 for (nzero = 0; nzero < numSec/3; nzero++) {
237 if (++counter < numMul) {
238 nt = npos+nneg+nzero;
239 if ((nt>0) && (nt<=numSec) ) {
240 protmul[counter] =
pmltpc(npos,nneg,nzero,nt,protb,c);
241 protnorm[nt-1] += protmul[counter];
248 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
249 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
251 for( npos=0; npos<numSec/3; npos++ )
253 for( nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++ )
255 for( nzero=0; nzero<numSec/3; nzero++ )
257 if( ++counter < numMul )
259 nt = npos+nneg+nzero;
260 if( (nt>0) && (nt<=numSec) )
262 neutmul[counter] =
pmltpc(npos,nneg,nzero,nt,neutb,c);
263 neutnorm[nt-1] += neutmul[counter];
269 for (i = 0; i < numSec; i++) {
270 if (protnorm[i] > 0.0) protnorm[i] = 1.0/protnorm[i];
271 if (neutnorm[i] > 0.0) neutnorm[i] = 1.0/neutnorm[i];
276 pv[0] = incidentParticle;
277 pv[1] = targetParticle;
282 G4double cech[] = {0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.06, 0.04, 0.005, 0.};
283 G4int iplab =
G4int( std::min( 9.0, incidentTotalMomentum*2.5 ) );
284 if(
G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) )
287 if( targetCode == protonCode)
371 npos = 0; nneg = 0; nzero = 0;
375 G4double aleab = std::log(availableEnergy);
376 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
377 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
383 for (nt=1; nt<=numSec; nt++) {
384 test = std::exp( std::min( expxu, std::max( expxl, -(
pi/4.0)*(nt*nt)/(n*n) ) ) );
385 dum =
pi*nt/(2.0*n*
n);
386 if (std::fabs(dum) < 1.0) {
387 if (test >= 1.0
e-10) anpn += dum*
test;
395 if( targetCode == protonCode )
398 for (npos=0; npos<numSec/3; npos++) {
399 for (nneg=std::max(0,npos-2); nneg<=npos; nneg++) {
400 for (nzero=0; nzero<numSec/3; nzero++) {
401 if (++counter < numMul) {
402 nt = npos+nneg+nzero;
403 if ( (nt>0) && (nt<=numSec) ) {
404 test = std::exp( std::min( expxu, std::max( expxl, -(
pi/4.0)*(nt*nt)/(n*n) ) ) );
405 dum = (
pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
406 if (std::fabs(dum) < 1.0) {
407 if (test >= 1.0
e-10) excs += dum*
test;
411 if (ran < excs)
goto outOfLoop;
426 for (npos=0; npos<numSec/3; npos++) {
427 for (nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++) {
428 for (nzero=0; nzero<numSec/3; nzero++) {
429 if (++counter < numMul) {
430 nt = npos+nneg+nzero;
431 if ( (nt>=1) && (nt<=numSec) ) {
432 test = std::exp( std::min( expxu, std::max( expxl, -(
pi/4.0)*(nt*nt)/(n*n) ) ) );
433 dum = (
pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
434 if (std::fabs(dum) < 1.0) {
435 if (test >= 1.0
e-10) excs += dum*
test;
439 if (ran < excs)
goto outOfLoop;
458 if (targetCode == protonCode) {
462 else if (npos == (nneg+1))
490 else if (npos == (nneg-1))
500 nt = npos + nneg + nzero;
508 }
else if (rnd < (
G4double)(npos+nneg)/nt) {
519 nt = npos + nneg + nzero;
523 G4cout <<
"Particles produced: " ;
526 for ( i = 2; i < vecLen; i++)
G4cout << pv[i].getCode() <<
" " ;