50 G4cout <<
"WARNING: model G4HESigmaMinusInelastic is being deprecated and will\n"
51 <<
"disappear in Geant4 version 10.0" <<
G4endl;
57 outFile <<
"G4HESigmaMinusInelastic is one of the High Energy Parameterized\n"
58 <<
"(HEP) models used to implement inelastic Sigma- scattering\n"
59 <<
"from nuclei. It is a re-engineered version of the GHEISHA\n"
60 <<
"code of H. Fesefeldt. It divides the initial collision\n"
61 <<
"products into backward- and forward-going clusters which are\n"
62 <<
"then decayed into final state hadrons. The model does not\n"
63 <<
"conserve energy on an event-by-event basis. It may be\n"
64 <<
"applied to sigmas with initial energies above 20 GeV.\n";
88 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
90 if (incidentKineticEnergy < 1.)
91 G4cout <<
"GHESigmaMinusInelastic: incident energy < 1 GeV" <<
G4endl;
94 G4cout <<
"G4HESigmaMinusInelastic::ApplyYourself" <<
G4endl;
96 <<
"mass " << incidentMass
97 <<
"kinetic energy " << incidentKineticEnergy
99 G4cout <<
"target material with (A,Z) = ("
100 << atomicWeight <<
"," << atomicNumber <<
")" <<
G4endl;
104 atomicWeight, atomicNumber);
106 G4cout <<
"nuclear inelasticity = " << inelasticity <<
G4endl;
108 incidentKineticEnergy -= inelasticity;
114 atomicWeight, atomicNumber,
116 excitationEnergyDTA);
118 G4cout <<
"nuclear excitation = " << excitation << excitationEnergyGNP
119 << excitationEnergyDTA <<
G4endl;
121 incidentKineticEnergy -= excitation;
122 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
135 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
136 + targetMass*targetMass
137 + 2.0*targetMass*incidentTotalEnergy);
138 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
144 G4cout <<
"ApplyYourself: CallFirstIntInCascade for particle "
145 << incidentCode <<
G4endl;
147 G4bool successful =
false;
150 incidentParticle, targetParticle, atomicWeight);
153 G4cout <<
"ApplyYourself::StrangeParticlePairProduction" <<
G4endl;
155 if ((
vecLength > 0) && (availableEnergy > 1.))
158 incidentParticle, targetParticle);
161 excitationEnergyGNP, excitationEnergyDTA,
162 incidentParticle, targetParticle,
163 atomicWeight, atomicNumber);
166 excitationEnergyGNP, excitationEnergyDTA,
167 incidentParticle, targetParticle,
168 atomicWeight, atomicNumber);
171 excitationEnergyGNP, excitationEnergyDTA,
172 incidentParticle, targetParticle,
173 atomicWeight, atomicNumber);
177 excitationEnergyGNP, excitationEnergyDTA,
178 incidentParticle, targetParticle,
179 atomicWeight, atomicNumber);
182 excitationEnergyGNP, excitationEnergyDTA,
183 incidentParticle, targetParticle,
184 atomicWeight, atomicNumber);
188 atomicWeight, atomicNumber);
191 G4cout <<
"GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
219 static const G4double expxl = -expxu;
225 static const G4int numMul = 1200;
226 static const G4int numSec = 60;
234 static G4bool first =
true;
235 static G4double protmul[numMul], protnorm[numSec];
236 static G4double neutmul[numMul], neutnorm[numSec];
241 G4int i, counter,
nt, npos, nneg, nzero;
245 for( i=0; i<numMul; i++ )protmul[i] = 0.0;
246 for( i=0; i<numSec; i++ )protnorm[i] = 0.0;
248 for (npos = 0; npos < (numSec/3); npos++) {
249 for (nneg = std::max(0,npos-1); nneg <= (npos+1); nneg++) {
250 for (nzero = 0; nzero < numSec/3; nzero++) {
251 if (++counter < numMul) {
252 nt = npos+nneg+nzero;
253 if ((nt > 0) && (nt<=numSec) ) {
254 protmul[counter] =
pmltpc(npos,nneg,nzero,nt,protb,c);
255 protnorm[nt-1] += protmul[counter];
262 for (i = 0; i < numMul; i++) neutmul[i] = 0.0;
263 for (i = 0; i < numSec; i++) neutnorm[i] = 0.0;
265 for (npos = 0; npos < numSec/3; npos++) {
266 for (nneg = npos; nneg <= (npos+2); nneg++) {
267 for (nzero = 0; nzero < numSec/3; nzero++) {
268 if (++counter < numMul) {
269 nt = npos+nneg+nzero;
270 if ((nt>0) && (nt<=numSec) ) {
271 neutmul[counter] =
pmltpc(npos,nneg,nzero,nt,neutb,c);
272 neutnorm[nt-1] += neutmul[counter];
278 for (i = 0; i < numSec; i++) {
279 if (protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
280 if (neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
284 pv[0] = incidentParticle;
285 pv[1] = targetParticle;
289 G4double cech[] = {0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.06, 0.04, 0.005, 0.};
290 G4int iplab =
G4int( std::min( 9.0, incidentTotalMomentum*2.5 ) );
291 if (
G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) ) {
293 if (targetCode == neutronCode) {
300 }
else if (ran < 0.4) {
303 }
else if (ran < 0.6) {
306 }
else if (ran < 0.8) {
320 npos = 0, nneg = 0, nzero = 0;
323 G4double aleab = std::log(availableEnergy);
324 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
325 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
331 for (nt = 1; nt <= numSec; nt++) {
332 test = std::exp(std::min(expxu, std::max(expxl, -(
pi/4.0)*(nt*nt)/(n*n) ) ) );
333 dum =
pi*nt/(2.0*n*
n);
334 if (std::fabs(dum) < 1.0) {
335 if (test >= 1.0
e-10) anpn += dum*
test;
343 if (targetCode == protonCode) {
345 for (npos=0; npos<numSec/3; npos++) {
346 for (nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++) {
347 for (nzero=0; nzero<numSec/3; nzero++) {
348 if (++counter < numMul) {
349 nt = npos+nneg+nzero;
350 if ( (nt>0) && (nt<=numSec) ) {
351 test = std::exp( std::min( expxu, std::max( expxl, -(
pi/4.0)*(nt*nt)/(n*n) ) ) );
352 dum = (
pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
353 if (std::fabs(dum) < 1.0) {
354 if( test >= 1.0
e-10 )excs += dum*
test;
358 if (ran < excs)
goto outOfLoop;
371 for (npos=0; npos<numSec/3; npos++) {
372 for (nneg=npos; nneg<=(npos+2); nneg++) {
373 for (nzero=0; nzero<numSec/3; nzero++) {
374 if (++counter < numMul) {
375 nt = npos+nneg+nzero;
376 if ( (nt>=1) && (nt<=numSec) ) {
377 test = std::exp( std::min( expxu, std::max( expxl, -(
pi/4.0)*(nt*nt)/(n*n) ) ) );
378 dum = (
pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
379 if (std::fabs(dum) < 1.0) {
380 if( test >= 1.0
e-10 )excs += dum*
test;
384 if (ran < excs)
goto outOfLoop;
399 if (targetCode == neutronCode) {
403 else if (npos == (nneg-1))
448 else if (npos == (nneg+1))
465 nt = npos + nneg + nzero;
473 }
else if (rnd < (
G4double)(npos+nneg)/nt) {
484 nt = npos + nneg + nzero;
488 G4cout <<
"Particles produced: " ;
491 for (i = 2; i < vecLen; i++)
G4cout << pv[i].getCode() <<
" " ;