44 outFile <<
"G4HEProtonInelastic is one of the High Energy\n"
45 <<
"Parameterized (HEP) models used to implement inelastic\n"
46 <<
"proton scattering from nuclei. It is a re-engineered\n"
47 <<
"version of the GHEISHA code of H. Fesefeldt. It divides the\n"
48 <<
"initial collision products into backward- and forward-going\n"
49 <<
"clusters which are then decayed into final state hadrons.\n"
50 <<
"The model does not conserve energy on an event-by-event\n"
51 <<
"basis. It may be applied to protons with initial energies\n"
70 G4cout <<
"Z , A = " << atomicNumber <<
" " << atomicWeight <<
G4endl;
81 if (incidentKineticEnergy < 1.)
82 G4cout <<
"GHEProtonInelastic: incident energy < 1 GeV" <<
G4endl;
85 G4cout <<
"G4HEProtonInelastic::ApplyYourself" <<
G4endl;
86 G4cout <<
"incident particle " << incidentParticle.
getName() <<
" "
87 <<
"mass " << incidentMass <<
" "
88 <<
"kinetic energy " << incidentKineticEnergy
90 G4cout <<
"target material with (A,Z) = ("
91 << atomicWeight <<
"," << atomicNumber <<
")" <<
G4endl;
95 atomicWeight, atomicNumber);
97 G4cout <<
"nuclear inelasticity = " << inelasticity <<
G4endl;
99 incidentKineticEnergy -= inelasticity;
105 atomicWeight, atomicNumber,
107 excitationEnergyDTA);
110 G4cout <<
"nuclear excitation = " << excitation <<
" "
111 << excitationEnergyGNP <<
" " << excitationEnergyDTA <<
G4endl;
113 incidentKineticEnergy -= excitation;
114 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
127 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
128 + targetMass*targetMass
129 + 2.0*targetMass*incidentTotalEnergy);
130 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
143 G4cout <<
"ApplyYourself: CallFirstIntInCascade for particle "
144 << incidentCode <<
G4endl;
146 G4bool successful =
false;
149 incidentParticle, targetParticle, atomicWeight);
152 G4cout <<
"ApplyYourself::StrangeParticlePairProduction" <<
G4endl;
154 if ((
vecLength > 0) && (availableEnergy > 1.))
157 incidentParticle, targetParticle);
160 excitationEnergyGNP, excitationEnergyDTA,
161 incidentParticle, targetParticle,
162 atomicWeight, atomicNumber);
165 excitationEnergyGNP, excitationEnergyDTA,
166 incidentParticle, targetParticle,
167 atomicWeight, atomicNumber);
170 excitationEnergyGNP, excitationEnergyDTA,
171 incidentParticle, targetParticle,
172 atomicWeight, atomicNumber);
176 excitationEnergyGNP, excitationEnergyDTA,
177 incidentParticle, targetParticle,
178 atomicWeight, atomicNumber);
181 excitationEnergyGNP, excitationEnergyDTA,
182 incidentParticle, targetParticle,
183 atomicWeight, atomicNumber);
187 atomicWeight, atomicNumber);
190 G4cout <<
"GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
218 static const G4double expxl = -expxu;
224 static const G4int numMul = 1200;
225 static const G4int numSec = 60;
234 static G4bool first =
true;
235 static G4double protmul[numMul], protnorm[numSec];
236 static G4double neutmul[numMul], neutnorm[numSec];
241 G4int i, counter,
nt, npos, nneg, nzero;
246 for (i=0; i<numMul; i++) protmul[i] = 0.0;
247 for (i=0; i<numSec; i++) protnorm[i] = 0.0;
249 for (npos=0; npos<(numSec/3); npos++) {
250 for (nneg=
Imax(0,npos-2); nneg<=npos; nneg++) {
251 for (nzero=0; nzero<numSec/3; nzero++) {
252 if (++counter < numMul) {
253 nt = npos+nneg+nzero;
254 if ( (nt>0) && (nt<=numSec) ) {
255 protmul[counter] =
pmltpc(npos,nneg,nzero,nt,protb,c)
257 protnorm[nt-1] += protmul[counter];
264 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
265 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
267 for (npos=0; npos<numSec/3; npos++) {
268 for (nneg=
Imax(0,npos-1); nneg<=(npos+1); nneg++) {
269 for (nzero=0; nzero<numSec/3; nzero++) {
270 if (++counter < numMul) {
271 nt = npos+nneg+nzero;
272 if ( (nt>0) && (nt<=numSec) ) {
273 neutmul[counter] =
pmltpc(npos,nneg,nzero,nt,neutb,c)
275 neutnorm[nt-1] += neutmul[counter];
281 for (i=0; i<numSec; i++) {
282 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
283 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
290 pv[0] = incidentParticle;
291 pv[1] = targetParticle;
295 if (targetCode == neutronCode) {
296 G4double cech[] = {0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.06, 0.04, 0.005, 0.};
298 if (
G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) ) {
305 }
else if (availableEnergy <= pionMass)
return;
308 npos = 0, nneg = 0, nzero = 0;
312 G4double supp[] = {0., 0.4, 0.55, 0.65, 0.75, 0.82, 0.86, 0.90, 0.94, 0.98};
317 if (targetCode == protonCode) {
318 w0 = -
sqr(1.+protb)/(2.*c*
c);
319 wp = w0 = std::exp(w0);
329 w0 = -
sqr(1.+neutb)/(2.*c*
c);
332 wm = -
sqr(-1.+neutb)/(2.*c*
c);
333 wm = std::exp(wm)/2.;
338 { npos = 0; nneg = 0; nzero = 1; }
339 else if( ran < wp/wt)
340 { npos = 1; nneg = 0; nzero = 0; }
342 { npos = 0; nneg = 1; nzero = 0; }
347 G4double aleab = std::log(availableEnergy);
348 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
349 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
355 for (nt=1; nt<=numSec; nt++) {
356 test = std::exp(
Amin( expxu,
Amax( expxl, -(
pi/4.0)*(nt*nt)/(n*n) ) ) );
357 dum =
pi*nt/(2.0*n*
n);
358 if (std::fabs(dum) < 1.0) {
359 if( test >= 1.0
e-10 )anpn += dum*
test;
367 if( targetCode == protonCode )
370 for (npos=0; npos<numSec/3; npos++) {
371 for (nneg=
Imax(0,npos-2); nneg<=npos; nneg++) {
372 for (nzero=0; nzero<numSec/3; nzero++) {
373 if (++counter < numMul) {
374 nt = npos+nneg+nzero;
375 if ( (nt>0) && (nt<=numSec) ) {
376 test = std::exp(
Amin( expxu,
Amax( expxl, -(
pi/4.0)*(nt*nt)/(n*n) ) ) );
377 dum = (
pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
378 if (std::fabs(dum) < 1.0) {
379 if( test >= 1.0
e-10 )excs += dum*
test;
383 if (ran < excs)
goto outOfLoop;
397 for (npos=0; npos<numSec/3; npos++) {
398 for (nneg=
Imax(0,npos-1); nneg<=(npos+1); nneg++) {
399 for (nzero=0; nzero<numSec/3; nzero++) {
400 if (++counter < numMul) {
401 nt = npos+nneg+nzero;
402 if ( (nt>=1) && (nt<=numSec) ) {
403 test = std::exp(
Amin( expxu,
Amax( expxl, -(
pi/4.0)*(nt*nt)/(n*n) ) ) );
404 dum = (
pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
405 if (std::fabs(dum) < 1.0) {
406 if( test >= 1.0
e-10 )excs += dum*
test;
410 if (ran < excs)
goto outOfLoop;
423 if( targetCode == protonCode)
428 else if (npos == (1+nneg))
458 else if ( npos == (1+nneg))
469 nt = npos + nneg + nzero;
480 else if ( ran < (
G4double)(npos+nneg)/nt)
496 nt = npos + nneg + nzero;
500 G4cout <<
"Particles produced: " ;
503 for (i=2; i < vecLen; i++)