44 outFile <<
"G4HEOmegaMinusInelastic is one of the High Energy\n"
45 <<
"Parameterized (HEP) models used to implement inelastic\n"
46 <<
"Omega- scattering from nuclei. It is a re-engineered\n"
47 <<
"version of the GHEISHA code of H. Fesefeldt. It divides the\n"
48 <<
"initial collision products into backward- and forward-going\n"
49 <<
"clusters which are then decayed into final state hadrons.\n"
50 <<
"The model does not conserve energy on an event-by-event\n"
51 <<
"basis. It may be applied to Omega- with initial energies\n"
76 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
78 if (incidentKineticEnergy < 1.)
79 G4cout <<
"GHEOmegaMinusInelastic: incident energy < 1 GeV" <<
G4endl;
82 G4cout <<
"G4HEOmegaMinusInelastic::ApplyYourself" <<
G4endl;
84 <<
"mass " << incidentMass
85 <<
"kinetic energy " << incidentKineticEnergy
87 G4cout <<
"target material with (A,Z) = ("
88 << atomicWeight <<
"," << atomicNumber <<
")" <<
G4endl;
92 atomicWeight, atomicNumber);
94 G4cout <<
"nuclear inelasticity = " << inelasticity <<
G4endl;
96 incidentKineticEnergy -= inelasticity;
102 atomicWeight, atomicNumber,
104 excitationEnergyDTA);
106 G4cout <<
"nuclear excitation = " << excitation << excitationEnergyGNP
107 << excitationEnergyDTA <<
G4endl;
109 incidentKineticEnergy -= excitation;
110 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
123 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
124 + targetMass*targetMass
125 + 2.0*targetMass*incidentTotalEnergy);
126 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
132 G4cout <<
"ApplyYourself: CallFirstIntInCascade for particle "
133 << incidentCode <<
G4endl;
135 G4bool successful =
false;
138 incidentParticle, targetParticle, atomicWeight);
141 G4cout <<
"ApplyYourself::StrangeParticlePairProduction" <<
G4endl;
143 if ((
vecLength > 0) && (availableEnergy > 1.))
146 incidentParticle, targetParticle);
149 excitationEnergyGNP, excitationEnergyDTA,
150 incidentParticle, targetParticle,
151 atomicWeight, atomicNumber);
154 excitationEnergyGNP, excitationEnergyDTA,
155 incidentParticle, targetParticle,
156 atomicWeight, atomicNumber);
159 excitationEnergyGNP, excitationEnergyDTA,
160 incidentParticle, targetParticle,
161 atomicWeight, atomicNumber);
165 excitationEnergyGNP, excitationEnergyDTA,
166 incidentParticle, targetParticle,
167 atomicWeight, atomicNumber);
170 excitationEnergyGNP, excitationEnergyDTA,
171 incidentParticle, targetParticle,
172 atomicWeight, atomicNumber);
176 atomicWeight, atomicNumber);
179 G4cout <<
"GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
207 static const G4double expxl = -expxu;
213 static const G4int numMul = 1200;
214 static const G4int numSec = 60;
221 static G4bool first =
true;
222 static G4double protmul[numMul], protnorm[numSec];
223 static G4double neutmul[numMul], neutnorm[numSec];
228 G4int i, counter,
nt, npos, nneg, nzero;
233 for( i=0; i<numMul; i++ )protmul[i] = 0.0;
234 for( i=0; i<numSec; i++ )protnorm[i] = 0.0;
236 for( npos=0; npos<(numSec/3); npos++ )
238 for( nneg=std::max(0,npos-1); nneg<=npos; nneg++ )
240 for( nzero=0; nzero<numSec/3; nzero++ )
242 if( ++counter < numMul )
244 nt = npos+nneg+nzero;
245 if( (nt>0) && (nt<=numSec) )
247 protmul[counter] =
pmltpc(npos,nneg,nzero,nt,protb,c);
248 protnorm[nt-1] += protmul[counter];
254 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
255 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
257 for( npos=0; npos<numSec/3; npos++ )
259 for( nneg=npos; nneg<=(npos+1); nneg++ )
261 for( nzero=0; nzero<numSec/3; nzero++ )
263 if( ++counter < numMul )
265 nt = npos+nneg+nzero;
266 if( (nt>0) && (nt<=numSec) )
268 neutmul[counter] =
pmltpc(npos,nneg,nzero,nt,neutb,c);
269 neutnorm[nt-1] += neutmul[counter];
275 for( i=0; i<numSec; i++ )
277 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
278 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
285 pv[0] = incidentParticle;
286 pv[1] = targetParticle;
291 G4double cech[] = {0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.06, 0.04, 0.005, 0.};
292 G4int iplab =
G4int( std::min( 9.0, incidentTotalMomentum*2.5 ) );
293 if(
G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) )
296 if( targetCode == protonCode)
359 npos = 0; nneg = 0; nzero = 0;
362 G4double aleab = std::log(availableEnergy);
363 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
364 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
370 for (nt=1; nt<=numSec; nt++) {
371 test = std::exp( std::min( expxu, std::max( expxl, -(
pi/4.0)*(nt*nt)/(n*n) ) ) );
372 dum =
pi*nt/(2.0*n*
n);
373 if (std::fabs(dum) < 1.0) {
374 if( test >= 1.0
e-10 )anpn += dum*
test;
382 if (targetCode == protonCode) {
384 for (npos = 0; npos < numSec/3; npos++) {
385 for( nneg=std::max(0,npos-1); nneg<=npos; nneg++ )
387 for( nzero=0; nzero<numSec/3; nzero++ )
389 if( ++counter < numMul )
391 nt = npos+nneg+nzero;
392 if ( (nt>0) && (nt<=numSec) ) {
393 test = std::exp( std::min( expxu, std::max( expxl, -(
pi/4.0)*(nt*nt)/(n*n) ) ) );
394 dum = (
pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
395 if (std::fabs(dum) < 1.0) {
396 if( test >= 1.0
e-10 )excs += dum*
test;
400 if (ran < excs)
goto outOfLoop;
414 for( npos=0; npos<numSec/3; npos++ )
416 for( nneg=npos; nneg<=(npos+1); nneg++ )
418 for( nzero=0; nzero<numSec/3; nzero++ )
420 if( ++counter < numMul )
422 nt = npos+nneg+nzero;
423 if ( (nt>=1) && (nt<=numSec) ) {
424 test = std::exp( std::min( expxu, std::max( expxl, -(
pi/4.0)*(nt*nt)/(n*n) ) ) );
425 dum = (
pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
426 if (std::fabs(dum) < 1.0) {
427 if( test >= 1.0
e-10 )excs += dum*
test;
431 if (ran < excs)
goto outOfLoop;
448 if (targetCode == protonCode) {
466 nt = npos + nneg + nzero;
474 }
else if (rnd < (
G4double)(npos+nneg)/nt) {
485 nt = npos + nneg + nzero;
489 G4cout <<
"Particles produced: " ;
492 for (i=2; i < vecLen; i++)
G4cout << pv[i].getName() <<
" " ;