44 outFile <<
"G4HEKaonZeroInelastic is one of the High Energy\n"
45 <<
"Parameterized (HEP) models used to implement inelastic\n"
46 <<
"K0 scattering from nuclei. It is a re-engineered\n"
47 <<
"version of the GHEISHA code of H. Fesefeldt. It divides the\n"
48 <<
"initial collision products into backward- and forward-going\n"
49 <<
"clusters which are then decayed into final state hadrons.\n"
50 <<
"The model does not conserve energy on an event-by-event\n"
51 <<
"basis. It may be applied to K0 with initial energies\n"
76 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
78 if (incidentKineticEnergy < 1.)
79 G4cout <<
"GHEKaonZeroInelastic: incident energy < 1 GeV" <<
G4endl;;
82 G4cout <<
"G4HEKaonZeroInelastic::ApplyYourself" <<
G4endl;
84 <<
"mass " << incidentMass
85 <<
"kinetic energy " << incidentKineticEnergy
87 G4cout <<
"target material with (A,Z) = ("
88 << atomicWeight <<
"," << atomicNumber <<
")" <<
G4endl;
92 atomicWeight, atomicNumber);
94 G4cout <<
"nuclear inelasticity = " << inelasticity <<
G4endl;
96 incidentKineticEnergy -= inelasticity;
102 atomicWeight, atomicNumber,
104 excitationEnergyDTA);
106 G4cout <<
"nuclear excitation = " << excitation << excitationEnergyGNP
107 << excitationEnergyDTA <<
G4endl;
109 incidentKineticEnergy -= excitation;
110 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
123 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
124 + targetMass*targetMass
125 + 2.0*targetMass*incidentTotalEnergy);
126 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
132 G4cout <<
"ApplyYourself: CallFirstIntInCascade for particle "
133 << incidentCode <<
G4endl;
135 G4bool successful =
false;
138 incidentParticle, targetParticle, atomicWeight);
141 G4cout <<
"ApplyYourself::StrangeParticlePairProduction" <<
G4endl;
143 if ((
vecLength > 0) && (availableEnergy > 1.))
146 incidentParticle, targetParticle);
149 excitationEnergyGNP, excitationEnergyDTA,
150 incidentParticle, targetParticle,
151 atomicWeight, atomicNumber);
154 excitationEnergyGNP, excitationEnergyDTA,
155 incidentParticle, targetParticle,
156 atomicWeight, atomicNumber);
159 excitationEnergyGNP, excitationEnergyDTA,
160 incidentParticle, targetParticle,
161 atomicWeight, atomicNumber);
165 excitationEnergyGNP, excitationEnergyDTA,
166 incidentParticle, targetParticle,
167 atomicWeight, atomicNumber);
170 excitationEnergyGNP, excitationEnergyDTA,
171 incidentParticle, targetParticle,
172 atomicWeight, atomicNumber);
176 atomicWeight, atomicNumber);
179 G4cout <<
"GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
208 static const G4double expxl = -expxu;
214 static const G4int numMul = 1200;
215 static const G4int numSec = 60;
223 static G4bool first =
true;
224 static G4double protmul[numMul], protnorm[numSec];
225 static G4double neutmul[numMul], neutnorm[numSec];
230 G4int i, counter,
nt, npos, nneg, nzero;
235 for( i=0; i<numMul; i++ )protmul[i] = 0.0;
236 for( i=0; i<numSec; i++ )protnorm[i] = 0.0;
238 for( npos=0; npos<(numSec/3); npos++ )
240 for( nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++ )
242 for( nzero=0; nzero<numSec/3; nzero++ )
244 if( ++counter < numMul )
246 nt = npos+nneg+nzero;
247 if( (nt>0) && (nt<=numSec) )
250 pmltpc(npos,nneg,nzero,nt,protb,c) ;
251 protnorm[nt-1] += protmul[counter];
257 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
258 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
260 for( npos=0; npos<numSec/3; npos++ )
262 for( nneg=npos; nneg<=(npos+2); nneg++ )
264 for( nzero=0; nzero<numSec/3; nzero++ )
266 if( ++counter < numMul )
268 nt = npos+nneg+nzero;
269 if( (nt>0) && (nt<=numSec) )
272 pmltpc(npos,nneg,nzero,nt,neutb,c);
273 neutnorm[nt-1] += neutmul[counter];
279 for( i=0; i<numSec; i++ )
281 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
282 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
289 pv[0] = incidentParticle;
290 pv[1] = targetParticle;
295 if( targetCode == protonCode )
297 G4double cech[] = {0.33,0.27,0.29,0.31,0.27,0.18,0.13,0.10,0.09,0.07};
298 G4int iplab =
G4int( std::min( 9.0, incidentTotalMomentum*5. ) );
299 if(
G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) )
312 npos = 0, nneg = 0, nzero = 0;
316 G4double supp[] = {0., 0.4, 0.55, 0.65, 0.75, 0.82, 0.86, 0.90, 0.94, 0.98};
322 if( targetCode == neutronCode )
324 w0 = -
sqr(1.+protb)/(2.*c*
c);
326 wm = -
sqr(-1.+protb)/(2.*c*
c);
330 if(
G4UniformRand() < w0/(w0+wm) ) { npos = 0; nneg = 0; nzero = 1; }
332 { npos = 0; nneg = 1; nzero = 0; }
336 w0 = -
sqr(1.+neutb)/(2.*c*
c);
337 wp = w0 = std::exp(w0);
338 wm = -
sqr(-1.+neutb)/(2.*c*
c);
344 { npos = 0; nneg = 0; nzero = 1; }
345 else if( ran < wp/wt)
346 { npos = 1; nneg = 0; nzero = 0; }
348 { npos = 0; nneg = 1; nzero = 0; }
355 G4double aleab = std::log(availableEnergy);
356 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
357 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
363 for (nt=1; nt<=numSec; nt++) {
364 test = std::exp( std::min( expxu, std::max( expxl, -(
pi/4.0)*(nt*nt)/(n*n) ) ) );
365 dum =
pi*nt/(2.0*n*
n);
366 if (std::fabs(dum) < 1.0) {
367 if( test >= 1.0
e-10 )anpn += dum*
test;
375 if( targetCode == protonCode )
378 for( npos=0; npos<numSec/3; npos++ )
380 for( nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++ )
382 for (nzero=0; nzero<numSec/3; nzero++) {
383 if (++counter < numMul) {
384 nt = npos+nneg+nzero;
385 if ( (nt>0) && (nt<=numSec) ) {
386 test = std::exp( std::min( expxu, std::max( expxl, -(
pi/4.0)*(nt*nt)/(n*n) ) ) );
387 dum = (
pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
388 if (std::fabs(dum) < 1.0) {
389 if( test >= 1.0
e-10 )excs += dum*
test;
393 if (ran < excs)
goto outOfLoop;
407 for( npos=0; npos<numSec/3; npos++ )
409 for( nneg=npos; nneg<=(npos+2); nneg++ )
411 for (nzero=0; nzero<numSec/3; nzero++) {
412 if (++counter < numMul) {
413 nt = npos+nneg+nzero;
414 if ( (nt>=1) && (nt<=numSec) ) {
415 test = std::exp( std::min( expxu, std::max( expxl, -(
pi/4.0)*(nt*nt)/(n*n) ) ) );
416 dum = (
pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
417 if (std::fabs(dum) < 1.0) {
418 if( test >= 1.0
e-10 )excs += dum*
test;
422 if (ran < excs)
goto outOfLoop;
435 if( targetCode == neutronCode)
440 else if (npos == (nneg-1))
470 else if ( npos == (nneg+1))
481 nt = npos + nneg + nzero;
492 else if ( ran < (
G4double)(npos+nneg)/nt)
508 nt = npos + nneg + nzero;
512 G4cout <<
"Particles produced: " ;
515 for (i=2; i < vecLen; i++)