Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4Evaporation.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id$
28 //
29 // Hadronic Process: Nuclear De-excitations
30 // by V. Lara (Oct 1998)
31 //
32 // Alex Howard - added protection for negative probabilities in the sum, 14/2/07
33 //
34 // Modif (03 September 2008) by J. M. Quesada for external choice of inverse
35 // cross section option
36 // JMQ (06 September 2008) Also external choices have been added for
37 // superimposed Coulomb barrier (if useSICBis set true, by default is false)
38 //
39 // V.Ivanchenko (27 July 2009) added G4EvaporationDefaultGEMFactory option
40 // V.Ivanchenko (10 May 2010) rewrited BreakItUp method: do not make new/delete
41 // photon channel first, fission second,
42 // added G4UnstableFragmentBreakUp to decay
43 // unphysical fragments (like 2n or 2p),
44 // use Z and A integer
45 // V.Ivanchenko (22 April 2011) added check if a fragment can be deexcited
46 // by the FermiBreakUp model
47 // V.Ivanchenko (23 January 2012) added pointer of G4VPhotonEvaporation
48 
49 #include "G4Evaporation.hh"
50 #include "G4SystemOfUnits.hh"
51 #include "G4EvaporationFactory.hh"
54 #include "G4HadronicException.hh"
55 #include "G4NistManager.hh"
56 #include "G4FermiFragmentsPool.hh"
57 #include "G4PhotonEvaporation.hh"
58 
60  : theChannels(0),nChannels(0)
61 {
64  SetParameters();
65  InitialiseEvaporation();
66 }
67 
69  : theChannels(0),nChannels(0)
70 {
71  if(photoEvaporation) { SetPhotonEvaporation(photoEvaporation); }
73 
75  SetParameters();
76  InitialiseEvaporation();
77 }
78 
79 /*
80 G4Evaporation::G4Evaporation(std::vector<G4VEvaporationChannel*>* channels)
81  : theChannels(channels),theChannelFactory(0),nChannels(0)
82 {
83  // are input relible?
84  G4bool accepted = true;
85  if(!theChannels) { accepted = false; }
86  else if(0 == theChannels->size()) { accepted = false; }
87 
88  if(accepted) {
89  SetPhotonEvaporation((*channels)[0]);
90  } else {
91  SetPhotonEvaporation(new G4PhotonEvaporation());
92  theChannelFactory = new G4EvaporationDefaultGEMFactory(thePhotonEvaporation);
93  }
94  SetParameters();
95  InitialiseEvaporation();
96 }
97 */
98 
100 {
101  CleanChannels();
102  delete thePhotonEvaporation;
103  delete theChannelFactory;
104 }
105 
106 void G4Evaporation::CleanChannels()
107 {
108  for (size_t i=1; i<nChannels; ++i) { delete (*theChannels)[i]; }
109  delete theChannels;
110 }
111 
112 void G4Evaporation::SetParameters()
113 {
114  nist = G4NistManager::Instance();
115  minExcitation = CLHEP::keV;
116  maxZforFBU = G4FermiFragmentsPool::Instance()->GetMaxZ();
117  maxAforFBU = G4FermiFragmentsPool::Instance()->GetMaxA();
118  probabilities.reserve(68);
119 }
120 
121 void G4Evaporation::InitialiseEvaporation()
122 {
123  CleanChannels();
124  theChannels = theChannelFactory->GetChannel();
125  nChannels = theChannels->size();
126  probabilities.resize(nChannels, 0.0);
127  Initialise();
128 }
129 
131 {
132  for(size_t i=0; i<nChannels; ++i) {
133  (*theChannels)[i]->SetOPTxs(OPTxs);
134  (*theChannels)[i]->UseSICB(useSICB);
135  }
136 }
137 
139 {
140  delete theChannelFactory;
141  theChannelFactory = new G4EvaporationFactory(thePhotonEvaporation);
142  InitialiseEvaporation();
143 }
144 
146 {
147  delete theChannelFactory;
148  theChannelFactory = new G4EvaporationGEMFactory(thePhotonEvaporation);
149  InitialiseEvaporation();
150 }
151 
153 {
154  delete theChannelFactory;
155  theChannelFactory = new G4EvaporationDefaultGEMFactory(thePhotonEvaporation);
156  InitialiseEvaporation();
157 }
158 
160 {
161  if(ptr) { G4VEvaporation::SetPhotonEvaporation(ptr); }
162  if(0 < nChannels) { (*theChannels)[0] = ptr; }
163 }
164 
166 {
167  G4FragmentVector * theResult = new G4FragmentVector;
168  G4FragmentVector * theTempResult;
169  const G4double Elimit = 3*MeV;
170 
171  // The residual nucleus (after evaporation of each fragment)
172  G4Fragment* theResidualNucleus = new G4Fragment(theNucleus);
173 
174  G4double totprob, prob, oldprob = 0.0;
175  size_t maxchannel, i;
176 
177  G4int Amax = theResidualNucleus->GetA_asInt();
178 
179  // Starts loop over evaporated particles, loop is limited by number
180  // of nucleons
181  for(G4int ia=0; ia<Amax; ++ia) {
182 
183  // g,n,p and light fragments - evaporation is finished
184  G4int Z = theResidualNucleus->GetZ_asInt();
185  G4int A = theResidualNucleus->GetA_asInt();
186 
187  // stop deecitation loop if can be deexcited by FBU
188  if(maxZforFBU > Z && maxAforFBU >= A) {
189  theResult->push_back(theResidualNucleus);
190  return theResult;
191  }
192 
193  // check if it is stable, then finish evaporation
194  G4double abun = nist->GetIsotopeAbundance(Z, A);
195  /*
196  G4cout << "### G4Evaporation::BreakItUp step " << ia << " Z= " << Z
197  << " A= " << A << " Eex(MeV)= "
198  << theResidualNucleus->GetExcitationEnergy()
199  << " aban= " << abun << G4endl;
200  */
201  // stop deecitation loop in the case of the cold stable fragment
202  G4double Eex = theResidualNucleus->GetExcitationEnergy();
203  if(Eex <= minExcitation && abun > 0.0) {
204  theResult->push_back(theResidualNucleus);
205  return theResult;
206  }
207 
208  totprob = 0.0;
209  maxchannel = nChannels;
210  /*
211  G4cout << "### Evaporation loop #" << ia
212  << " Fragment: " << theResidualNucleus << G4endl;
213  */
214  // loop over evaporation channels
215  for(i=0; i<nChannels; ++i) {
216  prob = (*theChannels)[i]->GetEmissionProbability(theResidualNucleus);
217  //G4cout << " Channel# " << i << " prob= " << prob << G4endl;
218 
219  totprob += prob;
220  probabilities[i] = totprob;
221  // if two recent probabilities are near zero stop computations
222  if(i>=8) {
223  if(prob <= totprob*1.e-8 && oldprob <= totprob*1.e-8) {
224  maxchannel = i+1;
225  break;
226  }
227  }
228  oldprob = prob;
229  // protection for very excited fragment - avoid GEM
230  if(7 == i && Eex > Elimit*A) {
231  maxchannel = 8;
232  break;
233  }
234  }
235 
236  // photon evaporation in the case of no other channels available
237  // do evaporation chain and reset total probability
238  if(0.0 < totprob && probabilities[0] == totprob) {
239  //G4cout << "Start gamma evaporation" << G4endl;
240  theTempResult = (*theChannels)[0]->BreakUpFragment(theResidualNucleus);
241  if(theTempResult) {
242  size_t nsec = theTempResult->size();
243  for(size_t j=0; j<nsec; ++j) {
244  theResult->push_back((*theTempResult)[j]);
245  }
246  delete theTempResult;
247  }
248  totprob = 0.0;
249  }
250 
251  // stable fragnent - evaporation is finished
252  if(0.0 == totprob) {
253 
254  // if fragment is exotic, then try to decay it
255  if(0.0 == abun && Z < 20) {
256  //G4cout << "$$$ Decay exotic fragment" << G4endl;
257  theTempResult = unstableBreakUp.BreakUpFragment(theResidualNucleus);
258  if(theTempResult) {
259  size_t nsec = theTempResult->size();
260  for(size_t j=0; j<nsec; ++j) {
261  theResult->push_back((*theTempResult)[j]);
262  }
263  delete theTempResult;
264  }
265  }
266 
267  // save residual fragment
268  theResult->push_back(theResidualNucleus);
269  return theResult;
270  }
271 
272 
273  // select channel
274  totprob *= G4UniformRand();
275  // loop over evaporation channels
276  for(i=0; i<maxchannel; ++i) { if(probabilities[i] >= totprob) { break; } }
277 
278  // this should not happen
279  if(i >= nChannels) { i = nChannels - 1; }
280 
281 
282  // single photon evaporation, primary pointer is kept
283  if(0 == i) {
284  //G4cout << "Single gamma" << G4endl;
285  G4Fragment* gamma = (*theChannels)[0]->EmittedFragment(theResidualNucleus);
286  if(gamma) { theResult->push_back(gamma); }
287 
288  // fission, return results to the main loop if fission is succesful
289  } else if(1 == i) {
290  //G4cout << "Fission" << G4endl;
291  theTempResult = (*theChannels)[1]->BreakUp(*theResidualNucleus);
292  if(theTempResult) {
293  size_t nsec = theTempResult->size();
294  G4bool deletePrimary = true;
295  for(size_t j=0; j<nsec; ++j) {
296  if(theResidualNucleus == (*theTempResult)[j]) { deletePrimary = false; }
297  theResult->push_back((*theTempResult)[j]);
298  }
299  if(deletePrimary) { delete theResidualNucleus; }
300  delete theTempResult;
301  return theResult;
302  }
303 
304  // other channels
305  } else {
306  //G4cout << "Channel # " << i << G4endl;
307  theTempResult = (*theChannels)[i]->BreakUp(*theResidualNucleus);
308  if(theTempResult) {
309  size_t nsec = theTempResult->size();
310  if(nsec > 0) {
311  --nsec;
312  for(size_t j=0; j<nsec; ++j) {
313  theResult->push_back((*theTempResult)[j]);
314  }
315  // if the residual change its pointer
316  // then delete previous residual fragment and update to the new
317  if(theResidualNucleus != (*theTempResult)[nsec] ) {
318  delete theResidualNucleus;
319  theResidualNucleus = (*theTempResult)[nsec];
320  }
321  }
322  delete theTempResult;
323  }
324  }
325  }
326 
327  // loop is stopped, save residual
328  theResult->push_back(theResidualNucleus);
329 
330  return theResult;
331 }
332