Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4EqEMFieldWithEDM.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4EqEMFieldWithEDM.cc 69786 2013-05-15 09:38:51Z gcosmo $
28 //
29 //
30 // This is the standard right-hand side for equation of motion.
31 //
32 // 19.02.2009 Kevin Lynch, based on G4EqEMFieldWithSpin
33 // 06.11.2009 Hiromi Iinuma see:
34 // http://hypernews.slac.stanford.edu/HyperNews/geant4/get/emfields/161.html
35 //
36 // -------------------------------------------------------------------
37 
38 #include "G4EqEMFieldWithEDM.hh"
40 #include "G4ThreeVector.hh"
41 #include "globals.hh"
42 #include "G4PhysicalConstants.hh"
43 #include "G4SystemOfUnits.hh"
44 
46  : G4EquationOfMotion( emField ), fElectroMagCof(0.), fMassCof(0.),
47  omegac(0.), anomaly(0.0011659208), eta(0.), pcharge(0.), E(0.),
48  gamma(0.), beta(0.)
49 {
50 }
51 
53 {
54 }
55 
56 void
58  G4double MomentumXc,
59  G4double particleMass)
60 {
61  fElectroMagCof = eplus*particleCharge*c_light ;
62  fMassCof = particleMass*particleMass ;
63 
64  omegac = (eplus/particleMass)*c_light;
65 
66  pcharge = particleCharge;
67 
68  E = std::sqrt(sqr(MomentumXc)+sqr(particleMass));
69  beta = MomentumXc/E;
70  gamma = E/particleMass;
71 
72 }
73 
74 void
76  const G4double Field[],
77  G4double dydx[] ) const
78 {
79 
80  // Components of y:
81  // 0-2 dr/ds,
82  // 3-5 dp/ds - momentum derivatives
83  // 9-11 dSpin/ds = (1/beta) dSpin/dt - spin derivatives
84 
85  // The BMT equation, following J.D.Jackson, Classical
86  // Electrodynamics, Second Edition, with additions for EDM
87  // evolution from
88  // M.Nowakowski, et.al. Eur.J.Phys.26, pp 545-560, (2005)
89  // or
90  // Silenko, Phys.Rev.ST Accel.Beams 9:034003, (2006)
91 
92  // dS/dt = (e/m) S \cross
93  // MDM: [ (g/2-1 +1/\gamma) B
94  // -(g/2-1)\gamma/(\gamma+1) (\beta \cdot B)\beta
95  // -(g/2-\gamma/(\gamma+1) \beta \cross E
96  //
97  // EDM: eta/2( E - gamma/(gamma+1) \beta (\beta \cdot E)
98  // + \beta \cross B ) ]
99  //
100  // where
101  // S = \vec{s}, where S^2 = 1
102  // B = \vec{B}
103  // \beta = \vec{\beta} = \beta \vec{u} with u^2 = 1
104  // E = \vec{E}
105 
106  G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ;
107 
108  G4double Energy = std::sqrt( pSquared + fMassCof );
109  G4double cof2 = Energy/c_light ;
110 
111  G4double pModuleInverse = 1.0/std::sqrt(pSquared) ;
112 
113  G4double inverse_velocity = Energy * pModuleInverse / c_light;
114 
115  G4double cof1 = fElectroMagCof*pModuleInverse ;
116 
117  dydx[0] = y[3]*pModuleInverse ;
118  dydx[1] = y[4]*pModuleInverse ;
119  dydx[2] = y[5]*pModuleInverse ;
120 
121  dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ;
122 
123  dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ;
124 
125  dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ;
126 
127  dydx[6] = dydx[8] = 0.;//not used
128 
129  // Lab Time of flight
130  dydx[7] = inverse_velocity;
131 
132  G4ThreeVector BField(Field[0],Field[1],Field[2]);
133  G4ThreeVector EField(Field[3],Field[4],Field[5]);
134 
135  EField /= c_light;
136 
137  G4ThreeVector u(y[3], y[4], y[5]);
138  u *= pModuleInverse;
139 
140  G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u);
141  G4double ucb = (anomaly+1./gamma)/beta;
142  G4double uce = anomaly + 1./(gamma+1.);
143  G4double ude = beta*gamma/(1.+gamma)*(EField*u);
144 
145  G4ThreeVector Spin(y[9],y[10],y[11]);
146 
147  G4ThreeVector dSpin
148  = pcharge*omegac*( ucb*(Spin.cross(BField))-udb*(Spin.cross(u))
149  // from Jackson
150  // -uce*Spin.cross(u.cross(EField)) )
151  // but this form has one less operation
152  - uce*(u*(Spin*EField) - EField*(Spin*u))
153  + eta/2.*(Spin.cross(EField) - ude*(Spin.cross(u))
154  // +Spin.cross(u.cross(Bfield))
155  + (u*(Spin*BField) - BField*(Spin*u)) ) );
156 
157  dydx[ 9] = dSpin.x();
158  dydx[10] = dSpin.y();
159  dydx[11] = dSpin.z();
160 
161  return ;
162 }