97 BarkasCorr = ThetaK = ThetaL = 0;
105 for(
G4int i=0; i<nIons; ++i) {
delete stopData[i];}
124 SetupKinematics(p, mat, e);
125 if(tau <= 0.0) {
return 0.0; }
131 G4double sum = (2.0*(Barkas + Bloch) + Mott);
134 G4cout <<
"EmCorrections: E(MeV)= " << e/
MeV <<
" Barkas= " << Barkas
135 <<
" Bloch= " << Bloch <<
" Mott= " << Mott
136 <<
" Sum= " << sum <<
" q2= " << q2 <<
G4endl;
158 SetupKinematics(p, mat, e);
178 SetupKinematics(p, mat, e);
179 if(tau <= 0.0) {
return 0.0; }
185 G4double sum = 2.0*(Barkas*(charge - 1.0)/charge + Bloch) + Mott;
188 G4cout <<
"EmCorrections: E(MeV)= " << e/
MeV <<
" Barkas= " << Barkas
189 <<
" Bloch= " << Bloch <<
" Mott= " << Mott
190 <<
" Sum= " << sum <<
G4endl;
194 if(verbose > 1) {
G4cout <<
" Sum= " << sum <<
G4endl; }
216 else if(Z < 1) Z = 1;
220 if(thcorr.find(ionPDG)==thcorr.end()) {
221 std::vector<G4double>
v;
222 for(
size_t i=0; i<ncouples; ++i){
225 thcorr.insert(std::pair<
G4int, std::vector<G4double> >(ionPDG,v));
242 if(verbose > 1) {
G4cout <<
" Sum= " << sum <<
" dSum= " << rest/e <<
G4endl; }
253 SetupKinematics(p, mat, e);
266 SetupKinematics(p, mat, e);
267 G4double dedx = 0.5*tmax/(kinEnergy + mass);
268 return 0.5*dedx*dedx;
277 SetupKinematics(p, mat, e);
279 for (
G4int i = 0; i<numberOfElements; ++i) {
281 G4double Z = (*theElementVector)[i]->GetZ();
290 G4double tet = Z2*(1. + Z2*0.25*alpha2);
291 if(11 < iz) { tet = ThetaK->
Value(Z); }
292 term += f*atomDensity[i]*KShell(tet,eta)/
Z;
306 SetupKinematics(p, mat, e);
308 for (
G4int i = 0; i<numberOfElements; ++i) {
310 G4double Z = (*theElementVector)[i]->GetZ();
314 if(iz < 10) { Zeff = Z - ZD[
iz]; }
323 if(3 > j) { tet = 0.25*Z2*(1.0 + 5*Z2*alpha2/16.); }
324 else { tet = 0.25*Z2*(1.0 + Z2*alpha2/16.); }
328 term += f*ne*atomDensity[i]*LShell(tet,eta)/
Z;
349 }
else if(tet > TheK[nK-1]) {
353 itet = Index(x, TheK, nK);
356 if(eta >= Eta[nEtaK-1]) {
357 corr = (Value(x, TheK[itet], TheK[itet+1], UK[itet], UK[itet+1]) +
358 Value(x, TheK[itet], TheK[itet+1], VK[itet], VK[itet+1])/eta +
359 Value(x, TheK[itet], TheK[itet+1], ZK[itet], ZK[itet+1])/(eta*eta))/eta;
365 ieta = Index(y, Eta, nEtaK);
367 corr = Value2(x, y, TheK[itet], TheK[itet+1], Eta[ieta], Eta[ieta+1],
368 CK[itet][ieta], CK[itet+1][ieta],
369 CK[itet][ieta+1], CK[itet+1][ieta+1]);
391 }
else if(tet > TheL[nL-1]) {
395 itet = Index(x, TheL, nL);
399 if(eta >= Eta[nEtaL-1]) {
400 corr = (Value(x, TheL[itet], TheL[itet+1], UL[itet], UL[itet+1])
401 + Value(x, TheL[itet], TheL[itet+1], VL[itet], VL[itet+1])/eta
408 ieta = Index(y, Eta, nEtaL);
410 corr = Value2(x, y, TheL[itet], TheL[itet+1], Eta[ieta], Eta[ieta+1],
411 CL[itet][ieta], CL[itet+1][ieta],
412 CL[itet][ieta+1], CL[itet+1][ieta+1]);
429 SetupKinematics(p, mat, e);
431 G4double bg2lim= taulim * (taulim+2.0);
439 if ( bg2 >= bg2lim ) {
440 for (
G4int k=0; k<3; k++) {
442 sh += shellCorrectionVector[k]/
x;
446 for (
G4int k=0; k<3; k++) {
448 sh += shellCorrectionVector[k]/
x;
450 sh *= std::log(tau/taul)/std::log(taulim/taul);
463 SetupKinematics(p, mat, ekin);
468 for (
G4int i = 0; i<numberOfElements; ++i) {
472 G4double Z = (*theElementVector)[i]->GetZ();
481 G4double tet = Z2*(1. + Z2*0.25*alpha2);
482 if(11 < iz) { tet = ThetaK->
Value(Z); }
483 res0 = f*KShell(tet,eta);
489 if(iz < 10) { Zeff = Z - ZD[
iz]; }
493 tet = ThetaL->
Value(Z);
501 if(3 > j) { tet = 0.25*Z2*(1.0 + 5*Z2*alpha2/16.); }
502 else { tet = 0.25*Z2*(1.0 + Z2*alpha2/16.); }
506 res0 = f*ne*LShell(tet,eta);
516 res += f*(iz - 10)*LShell(eshell,HM[iz-11]*eta);
518 res += f*18*LShell(eshell,HM[iz-11]*eta);
520 res += f*18*LShell(eshell,HM[52]*eta);
525 res += f*(iz - 28)*LShell(eshell,HN[iz-33]*eta);
527 res += 4*LShell(eshell,HN[iz-33]*eta);
529 res += 4*LShell(eshell,HN[30]*eta);
533 res += f*(iz - 60)*LShell(eshell,150*eta);
538 term += res*atomDensity[i]/
Z;
552 SetupKinematics(p, mat, e);
560 G4double twoln10 = 2.0*std::log(10.0);
566 dedx = twoln10*x - cden ;
567 if ( x < x1den ) dedx += aden*std::pow((x1den-x),mden) ;
584 SetupKinematics(p, mat, e);
587 for (
G4int i = 0; i<numberOfElements; ++i) {
589 G4double Z = (*theElementVector)[i]->GetZ();
592 BarkasTerm += atomDensity[i]*0.006812*std::pow(beta,-0.9);
593 }
else if(iz >= 64) {
594 BarkasTerm += atomDensity[i]*0.002833*std::pow(beta,-1.2);
600 if(material->
GetName() ==
"G4_lH2") { b = 0.6; }
603 else if(2 == iz) { b = 0.6; }
604 else if(10 >= iz) { b = 1.8; }
605 else if(17 >= iz) { b = 1.4; }
606 else if(18 == iz) { b = 1.8; }
607 else if(25 >= iz) { b = 1.4; }
608 else if(50 >= iz) { b = 1.35;}
613 if(W > BarkasCorr->
Energy(46)) {
614 val *= BarkasCorr->
Energy(46)/W;
618 BarkasTerm += val*atomDensity[i] / (std::sqrt(Z*X)*
X);
636 SetupKinematics(p, mat, e);
645 del = 1.0/(j* (j*j +
y2));
647 }
while (del > 0.01*term);
662 SetupKinematics(p, mat, e);
675 if(e <= 0.0)
return nloss;
676 SetupKinematics(p, mat, e);
678 lossFlucFlag = fluct;
685 for (
G4int iel=0; iel<numberOfElements; iel++) {
686 const G4Element* element = (*theElementVector)[iel] ;
689 nloss += (NuclearStoppingPower(kinEnergy, z1, z2, mass1, mass2))
692 nloss *= theZieglerFactor;
706 if(z1 > 1.5) rm = (mass1 + mass2) * ( Z23[
G4int(z1)] + Z23[
G4int(z2)] ) ;
707 else rm = (mass1 + mass2) * nist->
GetZ13(
G4int(z2));
709 G4double er = 32.536 * mass2 * energy / ( z1 * z2 * rm ) ;
711 if (er >= ed[0]) { nloss = a[0]; }
714 for (
G4int i=102; i>=0; i--)
717 nloss = (a[i] - a[i+1])*(er - ed[i+1])/(ed[i] - ed[i+1]) + a[i+1];
727 G4double sig = 4.0 * mass1 * mass2 / ((mass1 + mass2)*(mass1 + mass2)*
728 (4.0 + 0.197/(er*er) + 6.584/er));
730 nloss *= G4RandGauss::shoot(1.0,sig) ;
733 nloss *= 8.462 * z1 * z2 * mass1 / rm ;
735 if ( nloss < 0.0) nloss = 0.0 ;
755 if(p != curParticle || mat != curMaterial) {
761 G4cout <<
"G4EmCorrections::EffectiveChargeCorrection: Zion= "
767 for(
G4int i=0; i<nIons; ++i) {
768 if(materialList[i] == mat && currentZ == Zion[i]) {
775 if(!ionList[idx]) BuildCorrectionVector();
776 if(ionList[idx]) curVector = stopData[idx];
777 }
else {
return factor; }
780 factor = curVector->
Value(ekin*massFactor);
782 G4cout <<
"E= " << ekin <<
" factor= " << factor <<
" massfactor= "
796 for(; i<nIons; ++i) {
797 if(Z == Zion[i] && A == Aion[i] && mname == materialName[i])
break;
802 materialName.push_back(mname);
803 materialList.push_back(0);
804 ionList.push_back(0);
805 stopData.push_back(dVector);
808 G4cout <<
"AddStoppingData Z= " << Z <<
" A= " << A <<
" " << mname
809 <<
" idx= " << i <<
G4endl;
816 void G4EmCorrections::BuildCorrectionVector()
818 if(!ionLEModel || !ionHEModel) {
838 G4cout <<
"BuildCorrectionVector: Stopping for "
840 << materialName[idx] <<
" Ion Z= " << Z <<
" A= " << A
841 <<
" massRatio= " << massRatio <<
G4endl;
857 G4double rest = escal*(dedxt - dedx1t);
861 for(
G4int i=0; i<=nbinCorr; ++i) {
866 dedx = v->Value(eth0)*std::sqrt(eion/eth0);
868 dedx = v->Value(eion);
879 G4cout <<
" E(meV)= " << e/
MeV <<
" Correction= " << dedx/dedx1
880 <<
" " << dedx <<
" " << dedx1
881 <<
" massF= " << massFactor <<
G4endl;
896 if(currmat.size() != ncouples) {
897 currmat.resize(ncouples);
898 for(std::map<
G4int, std::vector<G4double> >::iterator it =
899 thcorr.begin(); it != thcorr.end(); ++it){
900 (it->second).
clear();
903 for(
size_t i=0; i<ncouples; ++i) {
905 G4String nam = currmat[i]->GetName();
906 for(
G4int j=0; j<nIons; ++j) {
907 if(nam == materialName[j]) { materialList[j] = currmat[i]; }
915 void G4EmCorrections::Initialise()
971 for(i=0; i<47; ++i) { BarkasCorr->
PutValues(i, fTable[i][0], fTable[i][1]); }
1000 { 1.5E+5, 3.762E-5},
1002 { 1.0E+5, 5.554E-5},
1003 { 8.0E+4, 6.866E-5},
1004 { 6.0E+4, 9.020E-5},
1005 { 5.0E+4, 1.070E-4},
1006 { 4.0E+4, 1.319E-4},
1007 { 3.0E+4, 1.722E-4},
1008 { 2.0E+4, 2.499E-4},
1009 { 1.5E+4, 3.248E-4},
1011 { 1.0E+4, 4.688E-4},
1012 { 8.0E+3, 5.729E-4},
1013 { 6.0E+3, 7.411E-4},
1014 { 5.0E+3, 8.718E-4},
1015 { 4.0E+3, 1.063E-3},
1016 { 3.0E+3, 1.370E-3},
1017 { 2.0E+3, 1.955E-3},
1018 { 1.5E+3, 2.511E-3},
1020 { 1.0E+3, 3.563E-3},
1021 { 8.0E+2, 4.314E-3},
1022 { 6.0E+2, 5.511E-3},
1023 { 5.0E+2, 6.430E-3},
1024 { 4.0E+2, 7.756E-3},
1025 { 3.0E+2, 9.855E-3},
1026 { 2.0E+2, 1.375E-2},
1027 { 1.5E+2, 1.736E-2},
1029 { 1.0E+2, 2.395E-2},
1030 { 8.0E+1, 2.850E-2},
1031 { 6.0E+1, 3.552E-2},
1032 { 5.0E+1, 4.073E-2},
1033 { 4.0E+1, 4.802E-2},
1034 { 3.0E+1, 5.904E-2},
1035 { 1.5E+1, 9.426E-2},
1037 { 1.0E+1, 1.210E-1},
1038 { 8.0E+0, 1.377E-1},
1039 { 6.0E+0, 1.611E-1},
1040 { 5.0E+0, 1.768E-1},
1041 { 4.0E+0, 1.968E-1},
1042 { 3.0E+0, 2.235E-1},
1043 { 2.0E+0, 2.613E-1},
1044 { 1.5E+0, 2.871E-1},
1046 { 1.0E+0, 3.199E-1},
1047 { 8.0E-1, 3.354E-1},
1048 { 6.0E-1, 3.523E-1},
1049 { 5.0E-1, 3.609E-1},
1050 { 4.0E-1, 3.693E-1},
1051 { 3.0E-1, 3.766E-1},
1052 { 2.0E-1, 3.803E-1},
1053 { 1.5E-1, 3.788E-1},
1055 { 1.0E-1, 3.711E-1},
1056 { 8.0E-2, 3.644E-1},
1057 { 6.0E-2, 3.530E-1},
1058 { 5.0E-2, 3.444E-1},
1059 { 4.0E-2, 3.323E-1},
1060 { 3.0E-2, 3.144E-1},
1061 { 2.0E-2, 2.854E-1},
1062 { 1.5E-2, 2.629E-1},
1064 { 1.0E-2, 2.298E-1},
1065 { 8.0E-3, 2.115E-1},
1066 { 6.0E-3, 1.883E-1},
1067 { 5.0E-3, 1.741E-1},
1068 { 4.0E-3, 1.574E-1},
1069 { 3.0E-3, 1.372E-1},
1070 { 2.0E-3, 1.116E-1},
1071 { 1.5E-3, 9.559E-2},
1073 { 1.0E-3, 7.601E-2},
1074 { 8.0E-4, 6.668E-2},
1075 { 6.0E-4, 5.605E-2},
1076 { 5.0E-4, 5.008E-2},
1077 { 4.0E-4, 4.352E-2},
1078 { 3.0E-4, 3.617E-2},
1079 { 2.0E-4, 2.768E-2},
1080 { 1.5E-4, 2.279E-2},
1082 { 1.0E-4, 1.723E-2},
1083 { 8.0E-5, 1.473E-2},
1084 { 6.0E-5, 1.200E-2},
1085 { 5.0E-5, 1.052E-2},
1086 { 4.0E-5, 8.950E-3},
1087 { 3.0E-5, 7.246E-3},
1088 { 2.0E-5, 5.358E-3},
1089 { 1.5E-5, 4.313E-3},
1093 for(i=0; i<104; ++i) {
1099 theZieglerFactor =
eV*
cm2*1.0e-15 ;
1101 lossFlucFlag =
true;
1111 const G4double d[11] = {0., 0., 0., 1.72, 2.09, 2.48, 2.82, 3.16, 3.53, 3.84, 4.15};
1112 const G4double thek[20] = {0.64, 0.65, 0.66, 0.68, 0.70, 0.72, 0.74, 0.75, 0.76, 0.78,
1113 0.80, 0.82, 0.84, 0.85, 0.86, 0.88, 0.90, 0.92, 0.94, 0.95};
1114 const G4double sk[20] = {1.9477, 1.9232, 1.8996, 1.8550, 1.8137,
1115 1.7754, 1.7396, 1.7223, 1.7063, 1.6752,
1116 1.6461, 1.6189, 1.5933, 1.5811, 1.5693,
1117 1.5467, 1.5254, 1.5053, 1.4863, 1.4772};
1118 const G4double tk[20] = {2.5222, 2.5125, 2.5026, 2.4821, 2.4608,
1119 2.4388, 2.4163, 2.4044, 2.3933, 2.3701,
1120 2.3466, 2.3229, 2.2992, 2.2872, 2.2753,
1121 2.2515, 2.2277, 2.2040, 2.1804, 2.1686};
1122 const G4double uk[20] = {1.9999, 2.0134, 2.0258, 2.0478, 2.0662,
1123 2.0817, 2.0945, 2.0999, 2.1049, 2.1132,
1124 2.1197, 2.1246, 2.1280, 2.1292, 2.1301,
1125 2.1310, 2.1310, 2.1300, 2.1283, 2.1271};
1126 const G4double vk[20] = {8.3410, 8.3373, 8.3340, 8.3287, 8.3247,
1127 8.3219, 8.3201, 8.3194, 8.3191, 8.3188,
1128 8.3191, 8.3199, 8.3211, 8.3218, 8.3226,
1129 8.3244, 8.3264, 8.3285, 8.3308, 8.3320};
1131 for(i=0; i<11; ++i) { ZD[i] = d[i];}
1133 for(i=0; i<nK; ++i) {
1141 const G4double thel[26] = {0.24, 0.26, 0.28, 0.30, 0.32, 0.34, 0.35, 0.36, 0.38, 0.40,
1142 0.42, 0.44, 0.45, 0.46, 0.48, 0.50, 0.52, 0.54, 0.55, 0.56,
1143 0.58, 0.60, 0.62, 0.64, 0.65, 0.66};
1144 const G4double sl[26] = {15.3343, 13.9389, 12.7909, 11.8343, 11.0283,
1145 10.3424, 10.0371, 9.7537, 9.2443, 8.8005,
1146 8.4114, 8.0683, 7.9117, 7.7641, 7.4931,
1147 7.2506, 7.0327, 6.8362, 6.7452, 6.6584,
1148 6.4969, 6.3498, 6.2154, 6.0923, 6.0345, 5.9792};
1149 const G4double tl[26] = {35.0669, 33.4344, 32.0073, 30.7466, 29.6226,
1150 28.6128, 28.1449, 27.6991, 26.8674, 26.1061,
1151 25.4058, 24.7587, 24.4531, 24.1583, 23.5992,
1152 23.0771, 22.5880, 22.1285, 21.9090, 21.6958,
1153 21.2872, 20.9006, 20.5341, 20.1859, 20.0183, 19.8546};
1154 const G4double ul[26] = {0.1215, 0.5265, 0.8411, 1.0878, 1.2828,
1155 1.4379, 1.5032, 1.5617, 1.6608, 1.7401,
1156 1.8036, 1.8543, 1.8756, 1.8945, 1.9262,
1157 1.9508, 1.9696, 1.9836, 1.9890, 1.9935,
1158 2.0001, 2.0039, 2.0053, 2.0049, 2.0040, 2.0028};
1159 for(i=0; i<nL; ++i) {
1166 const G4double eta[29] = {0.005, 0.007, 0.01, 0.015, 0.02,
1167 0.03, 0.04, 0.05, 0.06, 0.08,
1168 0.1, 0.15, 0.2, 0.3, 0.4,
1169 0.5, 0.6, 0.7, 0.8, 1.0,
1170 1.2, 1.4, 1.5, 1.7, 2.0, 3.0, 5.0, 7.0, 10.};
1173 {0.005, 1.34782E-8, 1.46132E-8, 1.72179E-8, 2.03521E-8, 2.41370E-8, 2.87247E-8, 3.13778E-8, 3.43072E-8, 4.11274E-8, 4.94946E-8},
1174 {0.007, 6.87555E-8, 7.44373E-8, 8.74397E-8, 1.03022E-7, 1.21760E-7, 1.44370E-7, 1.57398E-7, 1.71747E-7, 2.05023E-7, 2.45620E-7},
1175 {0.01, 3.78413E-7, 4.08831E-7, 4.78154E-7, 5.60760E-7, 6.59478E-7, 7.77847E-7, 8.45709E-7, 9.20187E-7, 1.09192E-6, 1.29981E-6},
1176 {0.015, 2.53200E-6, 2.72664E-6, 3.16738E-6, 3.68791E-6, 4.30423E-6, 5.03578E-6, 5.45200E-6, 5.90633E-6, 6.94501E-6, 8.18757E-6},
1177 {0.02, 9.43891E-6, 1.01339E-5, 1.16984E-5, 1.35313E-5, 1.56829E-5, 1.82138E-5, 1.96439E-5, 2.11973E-5, 2.47216E-5, 2.88935E-5},
1178 {0.03, 5.67088E-5, 6.05576E-5, 6.91311E-5, 7.90324E-5, 9.04832E-5, 1.03744E-4, 1.11147E-4, 1.19122E-4, 1.36980E-4, 1.57744E-4},
1179 {0.04, 1.91576E-4, 2.03626E-4, 2.30230E-4, 2.60584E-4, 2.95248E-4, 3.34870E-4, 3.56771E-4, 3.80200E-4, 4.32104E-4, 4.91584E-4},
1180 {0.05, 4.74226E-4, 5.02006E-4, 5.62872E-4, 6.31597E-4, 7.09244E-4, 7.97023E-4, 8.45134E-4, 8.96410E-4, 1.00867E-3, 1.13590E-3},
1181 {0.06, 9.67285E-4, 1.02029E-3, 1.13566E-3, 1.26476E-3, 1.46928E-3, 1.57113E-3, 1.65921E-3, 1.75244E-3, 1.95562E-3, 2.18336E-3},
1182 {0.08, 2.81537E-3, 2.95200E-3, 3.24599E-3, 3.57027E-3, 3.92793E-3, 4.32246E-3, 4.53473E-3, 4.75768E-3, 5.23785E-3, 5.76765E-3},
1183 {0.1, 6.14216E-3, 6.40864E-3, 6.97750E-3, 7.59781E-3, 8.27424E-3, 9.01187E-3, 9.40534E-3, 9.81623E-3, 1.06934E-2, 1.16498E-2},
1184 {0.15, 2.23096E-2, 2.30790E-2, 2.46978E-2, 2.64300E-2, 2.82832E-2, 3.02661E-2, 3.13090E-2, 3.23878E-2, 3.46580E-2, 3.70873E-2},
1185 {0.2, 5.04022E-2, 5.18492E-2, 5.48682E-2, 5.80617E-2, 6.14403E-2, 6.50152E-2, 6.68798E-2, 6.87981E-2, 7.28020E-2, 7.70407E-2},
1186 {0.3, 1.38018E-1, 1.41026E-1, 1.47244E-1, 1.53743E-1, 1.60536E-1, 1.67641E-1, 1.71315E-1, 1.75074E-1, 1.82852E-1, 1.90997E-1},
1187 {0.4, 2.56001E-1, 2.60576E-1, 2.69992E-1, 2.79776E-1, 2.89946E-1, 3.00525E-1, 3.05974E-1, 3.11533E-1, 3.22994E-1, 3.34935E-1},
1188 {0.5, 3.92181E-1, 3.98213E-1, 4.10597E-1, 4.23427E-1, 4.36726E-1, 4.50519E-1, 4.57610E-1, 4.64834E-1, 4.79700E-1, 4.95148E-1},
1189 {0.6, 5.37913E-1, 5.45268E-1, 5.60350E-1, 5.75948E-1, 5.92092E-1, 6.08811E-1, 6.17396E-1, 6.26136E-1, 6.44104E-1, 6.62752E-1},
1190 {0.7, 6.87470E-1, 6.96021E-1, 7.13543E-1, 7.31650E-1, 7.50373E-1, 7.69748E-1, 7.79591E-1, 7.89811E-1, 8.10602E-1, 8.32167E-1},
1191 {0.8, 8.37159E-1, 8.46790E-1, 8.66525E-1, 8.86910E-1, 9.07979E-1, 9.29772E-1, 9.40953E-1, 9.52331E-1, 9.75701E-1, 9.99934E-1},
1192 {1.0, 1.12850, 1.14002, 1.16362, 1.18799, 1.21317, 1.23921, 1.25257, 1.26616, 1.29408, 1.32303},
1193 {1.2, 1.40232, 1.41545, 1.44232, 1.47007, 1.49875, 1.52842, 1.54364, 1.55913, 1.59095, 1.62396},
1194 {1.4, 1.65584, 1.67034, 1.70004, 1.73072, 1.76244, 1.79526, 1.81210, 1.82925, 1.86448, 1.90104},
1195 {1.5, 1.77496, 1.79009, 1.82107, 1.85307, 1.88617, 1.92042, 1.93800, 1.95590, 1.99269, 2.03087},
1196 {1.7, 1.99863, 2.01490, 2.04822, 2.08265, 2.11827, 2.15555, 2.17409, 2.19337, 2.23302, 2.27419},
1197 {2.0, 2.29325, 2.31100, 2.34738, 2.38501, 2.42395, 2.46429, 2.48401, 2.50612, 2.54955, 2.59468},
1198 {3.0, 3.08887, 3.11036, 3.15445, 3.20013, 3.24748, 3.29664, 3.32192, 3.34770, 3.40081, 3.45611},
1199 {5.0, 4.07599, 4.10219, 4.15606, 4.21199, 4.27010, 4.33056, 4.36172, 4.39353, 4.45918, 4.52772},
1200 {7.0, 4.69647, 4.72577, 4.78608, 4.84877, 4.91402, 4.98200, 5.01707, 5.05290, 5.12695, 5.20436},
1201 {10.0, 5.32590, 5.35848, 5.42560, 5.49547, 5.56830, 5.64429, 5.68353, 5.72366, 5.80666, 5.89359}
1205 {0.005, 5.98040E-8, 7.25636E-8, 8.00602E-8, 8.84294E-8, 1.08253E-7, 1.33148E-7, 1.64573E-7, 2.04459E-7, 2.28346E-7, 2.55370E-7},
1206 {0.007, 2.95345E-7, 3.56497E-7, 3.92247E-7, 4.32017E-7, 5.25688E-7, 6.42391E-7, 7.88464E-7, 9.72171E-7, 1.08140E-6, 1.20435E-6},
1207 {0.01, 1.55232E-6, 1.86011E-6, 2.03881E-6, 2.23662E-6, 2.69889E-6, 3.26860E-6, 3.26860E-6, 4.84882E-6, 5.36428E-6, 5.94048E-6},
1208 {0.015, 9.67802E-6, 1.14707E-5, 1.25008E-5, 1.36329E-5, 1.62480E-5, 1.94200E-5, 2.32783E-5, 2.79850E-5, 3.07181E-5, 3.37432E-5},
1209 {0.02, 3.38425E-5, 3.97259E-5, 4.30763E-5, 4.67351E-5, 5.51033E-5, 6.51154E-5, 7.71154E-5, 9.15431E-5, 9.98212E-5, 1.08909E-4},
1210 {0.03, 1.81920E-4, 2.10106E-4, 2.25918E-4, 2.43007E-4, 2.81460E-4, 3.26458E-4, 3.79175E-4, 4.41006E-4, 4.75845E-4, 5.13606E-4},
1211 {0.04, 5.59802E-4, 6.38103E-4, 6.81511E-4, 7.28042E-4, 8.31425E-4, 9.50341E-4, 1.08721E-3, 1.24485E-3, 1.33245E-3, 1.42650E-3},
1212 {0.05, 1.28002E-3, 1.44336E-3, 1.53305E-3, 1.62855E-3, 1.83861E-3, 2.07396E-3, 2.34750E-3, 2.65469E-3, 2.82358E-3, 3.00358E-3},
1213 {0.06, 2.42872E-3, 2.72510E-3, 2.88111E-3, 3.04636E-3, 3.40681E-3, 3.81132E-3, 4.26536E-3, 4.77507E-3, 5.05294E-3, 5.34739E-3},
1214 {0.08, 6.35222E-3, 6.99730E-3, 7.34446E-3, 7.70916E-3, 8.49478E-3, 9.36187E-3, 1.03189E-2, 1.13754E-2, 1.19441E-2, 1.25417E-2},
1215 {0.1, 1.26929E-2, 1.38803E-2, 1.44371E-2, 1.50707E-2, 1.64235E-2, 1.78989E-2, 1.95083E-2, 2.12640E-2, 2.22009E-2, 2.31795E-2},
1216 {0.15, 3.96872E-2, 4.24699E-2, 4.39340E-2, 4.54488E-2, 4.86383E-2, 5.20542E-2, 5.57135E-2, 5.96350E-2, 6.17003E-2, 6.38389E-2},
1217 {0.2, 8.15290E-2, 8.62830E-2, 8.87650E-2, 9.13200E-2, 9.66589E-2, 1.02320E-1, 1.08326E-1, 1.14701E-1, 1.18035E-1, 1.21472E-1},
1218 {0.3, 1.99528E-1, 2.08471E-1, 2.13103E-1, 2.17848E-1, 2.27689E-1, 2.38022E-1, 2.48882E-1, 2.60304E-1, 2.66239E-1, 2.72329E-1},
1219 {0.4, 3.47383E-1, 3.60369E-1, 3.67073E-1, 3.73925E-1, 3.88089E-1, 4.02900E-1, 4.18404E-1, 4.34647E-1, 4.43063E-1, 4.51685E-1},
1220 {0.5, 5.11214E-1, 5.27935E-1, 5.36554E-1, 5.45354E-1, 5.63515E-1, 5.82470E-1, 6.02273E-1, 6.22986E-1, 6.33705E-1, 6.44677E-1},
1221 {0.6, 6.82122E-1, 7.02260E-1, 7.12631E-1, 7.23214E-1, 7.45041E-1, 7.67800E-1, 7.91559E-1, 8.16391E-1, 8.29235E-1, 8.42380E-1},
1222 {0.7, 8.54544E-1, 8.77814E-1, 8.89791E-1, 9.02008E-1, 9.27198E-1, 9.53454E-1, 9.80856E-1, 1.00949, 1.02430, 1.03945},
1223 {0.8, 1.02508, 1.05121, 1.06466, 1.07838, 1.10667, 1.13615, 1.16692, 1.19907, 1.21570, 1.23272},
1224 {1.0, 1.35307, 1.38429, 1.40036, 1.41676, 1.45057, 1.48582, 1.52263, 1.56111, 1.58102, 1.60140},
1225 {1.2, 1.65823, 1.69385, 1.71220, 1.73092, 1.76954, 1.80983, 1.85192, 1.89596, 1.91876, 1.94211},
1226 {1.4, 1.93902, 1.97852, 1.99887, 2.01964, 2.06251, 2.10727, 2.15406, 2.20304, 2.22842, 2.25442},
1227 {1.5, 2.07055, 2.11182, 2.13309, 2.15480, 2.19963, 2.24644, 2.29539, 2.34666, 2.37323, 2.40045},
1228 {1.7, 2.31700, 2.36154, 2.38451, 2.40798, 2.45641, 2.50703, 2.56000, 2.61552, 2.64430, 2.67381},
1229 {2.0, 2.64162, 2.69053, 2.71576, 2.74154, 2.79481, 2.85052, 2.90887, 2.97009, 3.00185, 3.03442},
1230 {3.0, 3.51376, 3.57394, 3.60503, 3.63684, 3.70268, 3.77170, 3.84418, 3.92040, 3.96003, 4.00073},
1231 {5.0, 4.59935, 4.67433, 4.71316, 4.75293, 4.83543, 4.92217, 5.01353, 5.10992, 5.16014, 5.21181},
1232 {7.0, 5.28542, 5.37040, 5.41445, 5.45962, 5.55344, 5.65226, 5.79496, 5.90517, 5.96269, 6.02191},
1233 {10.0, 5.98474, 6.08046, 6.13015, 6.18112, 6.28715, 6.39903, 6.51728, 6.64249, 6.70792, 6.77535}
1237 {0.005, 2.4111E-4, 2.5612E-4, 2.7202E-4, 3.0658E-4, 3.4511E-4, 3.8795E-4, 4.3542E-4, 4.6100E-4, 4.8786E-4},
1238 {0.007, 6.3947E-4, 6.7058E-4, 7.0295E-4, 7.7167E-4, 8.4592E-4, 9.2605E-4, 1.0125E-3, 1.0583E-3, 1.1058E-3},
1239 {0.01, 1.5469E-3, 1.6036E-3, 1.6622E-3, 1.7856E-3, 1.9181E-3, 2.1615E-3, 2.3178E-3, 2.4019E-3, 2.4904E-3},
1240 {0.015, 3.7221E-3, 3.8404E-3, 3.9650E-3, 4.2354E-3, 4.5396E-3, 4.8853E-3, 5.2820E-3, 5.5031E-3, 5.7414E-3},
1241 {0.02, 6.9449E-3, 7.1910E-3, 7.4535E-3, 8.0336E-3, 8.6984E-3, 9.4638E-3, 1.0348E-2, 1.0841E-2, 1.1372E-2},
1242 {0.03, 1.7411E-2, 1.8180E-2, 1.8997E-2, 2.0784E-2, 2.2797E-2, 2.5066E-2, 2.7622E-2, 2.9020E-2, 3.0503E-2},
1243 {0.04, 3.8474E-2, 4.0056E-2, 4.1718E-2, 4.5300E-2, 4.9254E-2, 5.3619E-2, 5.8436E-2, 6.1028E-2, 6.3752E-2},
1244 {0.05, 6.7371E-2, 6.9928E-2, 7.2596E-2, 7.8282E-2, 8.4470E-2, 9.1206E-2, 9.8538E-2, 1.0244E-1, 1.0652E-1},
1245 {0.06, 1.0418E-1, 1.0778E-1, 1.1152E-1, 1.1943E-1, 1.2796E-1, 1.3715E-1, 1.4706E-1, 1.5231E-1, 1.5776E-1},
1246 {0.08, 1.9647E-1, 2.0217E-1, 2.0805E-1, 2.2038E-1, 2.3351E-1, 2.4751E-1, 2.6244E-1, 2.7027E-1, 2.7837E-1},
1247 {0.1, 3.0594E-1, 3.1361E-1, 3.2150E-1, 3.3796E-1, 3.5537E-1, 3.7381E-1, 3.9336E-1, 4.0357E-1, 4.1410E-1},
1248 {0.15, 6.1411E-1, 6.2597E-1, 6.3811E-1, 6.6330E-1, 6.8974E-1, 7.1753E-1, 7.4678E-1, 7.6199E-1, 7.7761E-1},
1249 {0.2, 9.3100E-1, 9.5614E-1, 9.7162E-1, 1.0037, 1.0372, 1.0723, 1.1092, 1.1284, 1.1480},
1250 {0.3, 1.5172, 1.5372, 1.5576, 1.5998, 1.6438, 1.6899, 1.7382, 1.7632, 1.7889},
1251 {0.4, 2.0173, 2.0408, 2.0647, 2.1142, 2.1659, 2.2199, 2.2765, 2.3059, 2.3360},
1252 {0.5, 2.3932, 2.4193, 2.4460, 2.5011, 2.5587, 2.6190, 2.6821, 2.7148, 2.7484},
1253 {0.6, 2.7091, 2.7374, 2.7663, 2.8260, 2.8884, 2.9538, 3.0222, 3.0577, 3.0941},
1254 {0.7, 2.9742, 3.0044, 3.0352, 3.0988, 3.1652, 3.2349, 3.3079, 3.3457, 3.3845},
1255 {0.8, 3.2222, 3.2539, 3.2863, 3.3532, 3.4232, 3.4965, 3.5734, 3.6133, 3.6542},
1256 {1.0, 3.6690, 3.7033, 3.7384, 3.8108, 3.8866, 3.9661, 4.0495, 4.0928, 4.1371},
1257 {1.2, 3.9819, 4.0183, 4.0555, 4.1324, 4.2130, 4.2974, 4.3861, 4.4321, 4.4794},
1258 {1.4, 4.2745, 4.3127, 4.3517, 4.4324, 4.5170, 4.6056, 4.6988, 4.7471, 4.7968},
1259 {1.5, 4.4047, 4.4436, 4.4834, 4.5658, 4.6521, 4.7426, 4.8378, 4.8872, 4.9379},
1260 {1.7, 4.6383, 4.6787, 4.7200, 4.8054, 4.8949, 4.9888, 5.0876, 5.1388, 5.1915},
1261 {2.0, 4.9369, 4.9791, 5.0223, 5.1116, 5.2053, 5.3036, 5.4070, 5.4607, 5.5159},
1262 {3.0, 5.6514, 5.6981, 5.7459, 5.8450, 5.9489, 6.0581, 6.1730, 6.2328, 6.2943},
1263 {5.0, 6.4665, 6.5189, 6.5724, 6.6835, 6.8003, 6.9231, 7.0525, 7.1199, 7.1892},
1264 {7.0, 6.8634, 6.9194, 6.9767, 7.0957, 7.2208, 7.3526, 7.4915, 7.5639, 7.6384}
1269 {0.005, 5.4561E-4, 6.0905E-4, 6.7863E-4, 7.5494E-4, 7.9587E-4, 8.3883E-4, 9.3160E-4, 1.0352E-3, 1.1529E-3},
1270 {0.007, 1.2068E-3, 1.3170E-3, 1.4377E-3, 1.5719E-3, 1.6451E-3, 1.7231E-3, 1.8969E-3, 2.1009E-3, 2.3459E-3},
1271 {0.01, 2.6832E-3, 2.9017E-3, 3.1534E-3, 3.4479E-3, 3.6149E-3, 3.7976E-3, 4.2187E-3, 4.7320E-3, 5.3636E-3},
1272 {0.015, 6.2775E-3, 6.9077E-3, 7.6525E-3, 8.5370E-2, 9.0407E-3, 9.5910E-3, 1.0850E-2, 1.2358E-2, 1.4165E-2},
1273 {0.02, 1.2561E-2, 1.3943E-2, 1.5553E-2, 1.7327E-2, 1.8478E-2, 1.9612E-2, 2.2160E-2, 2.5130E-2, 2.8594E-2},
1274 {0.03, 3.3750E-2, 3.7470E-2, 4.1528E-2, 4.6170E-2, 4.8708E-2, 5.1401E-2, 5.7297E-2, 6.3943E-2, 7.1441E-2},
1275 {0.04, 6.9619E-2, 7.6098E-2, 8.3249E-2, 9.1150E-2, 9.5406E-2, 9.9881E-2, 1.0954E-1, 1.2023E-1, 1.3208E-1},
1276 {0.05, 1.1522E-1, 1.2470E-1, 1.3504E-1, 1.4632E-1, 1.5234E-1, 1.5864E-1, 1.7211E-1, 1.8686E-1, 2.0304E-1},
1277 {0.06, 1.6931E-1, 1.8179E-1, 1.9530E-1, 2.0991E-1, 2.1767E-1, 2.2576E-1, 2.4295E-1, 2.6165E-1, 2.8201E-1},
1278 {0.08, 2.9540E-1, 3.1361E-1, 3.3312E-1, 3.5403E-1, 3.6506E-1, 3.7650E-1, 4.0067E-1, 4.2673E-1, 4.5488E-1},
1279 {0.1, 4.3613E-1, 4.5956E-1, 4.852E-1, 5.1115E-1, 5.2514E-1, 5.3961E-1, 5.7008E-1, 6.0277E-1, 6.3793E-1},
1280 {0.15, 8.1014E-1, 8.4453E-1, 8.8093E-1, 9.1954E-1, 9.3973E-1, 9.6056E-1, 1.0043, 1.0509, 1.1008},
1281 {0.2, 1.1888, 1.2319, 1.2774, 1.3255, 1.3506, 1.3765, 1.4308, 1.4886, 1.5504},
1282 {0.3, 1.8422, 1.8983, 1.9575, 2.0201, 2.0528, 2.0864, 2.1569, 2.2319, 2.3120},
1283 {0.4, 2.3984, 2.4642, 2.5336, 2.6070, 2.6452, 2.6847, 2.7674, 2.8554, 2.9494},
1284 {0.5, 2.8181, 2.8915, 2.9690, 3.0509, 3.0937, 3.1378, 3.2301, 3.3285, 3.4337},
1285 {0.6, 3.1698, 3.2494, 3.3336, 3.4226, 3.4691, 3.5171, 3.6175, 3.7246, 3.8391},
1286 {0.7, 3.4652, 3.5502, 3.6400, 3.7351, 3.7848, 3.8360, 3.9433, 4.0578, 4.1804},
1287 {0.8, 3.7392, 3.8289, 3.9236, 4.0239, 4.0764, 4.1304, 4.2438, 4.3648, 4.4944},
1288 {1.0, 4.2295, 4.3269, 4.4299, 4.5391, 4.5962, 4.6551, 4.7786, 4.9106, 5.0520},
1289 {1.2, 4.5777, 4.6814, 4.7912, 4.9076, 4.9685, 5.0314, 5.1633, 5.3043, 5.4555},
1290 {1.4, 4.9001, 5.0092, 5.1247, 5.2473, 5.3114, 5.3776, 5.5166, 5.6653, 5.8249},
1291 {1.5, 5.0434, 5.1550, 5.2731, 5.3984, 5.4640, 5.5317, 5.6739, 5.8260, 5.9893},
1292 {1.7, 5.3011, 5.4170, 5.5398, 5.6701, 5.7373, 5.8088, 5.9568, 6.1152, 6.2853},
1293 {2.0, 5.6308, 5.7523, 5.8811, 6.0174, 6.0896, 6.1636, 6.3192, 6.4857, 6.6647},
1294 {3.0, 6.4224, 6.5580, 6.7019, 6.8549, 6.9351, 7.0180, 7.1925, 7.3795, 7.5808},
1295 {5.0, 7.3338, 7.4872, 7.6500, 7.8235, 7.9146, 8.0087, 8.2071, 8.4200, 8.6496},
1296 {7.0, 7.7938, 7.9588, 8.1342, 8.3211, 8.4193, 8.5209, 8.7350, 8.9651, 9.2133}
1300 {0.005, 1.2895E-3, 1.3670E-3, 1.4524E-3, 1.6524E-3, 1.9078E-3, 2.2414E-3, 2.6889E-3, 3.3006E-3},
1301 {0.007, 2.6467E-3, 2.8242E-3, 3.0238E-3, 3.5045E-3, 4.1260E-3, 4.9376E-3, 6.0050E-3, 7.4152E-3},
1302 {0.01, 6.1472E-3, 6.6086E-3, 7.1246E-3, 8.3491E-3, 9.8871E-3, 1.1822E-2, 1.4261E-2, 1.7335E-2},
1303 {0.015, 1.63316E-2, 1.7572E-2, 1.8932E-2, 2.2053E-2, 2.5803E-2, 3.0308E-2, 3.5728E-2, 4.2258E-2},
1304 {0.02, 3.2634E-2, 3.4900E-2, 3.7348E-2, 4.2850E-2, 4.9278E-2, 5.6798E-2, 6.5610E-2, 7.5963E-2},
1305 {0.03, 7.9907E-2, 8.4544E-2, 8.9486E-2, 1.0032E-1, 1.1260E-1, 1.2656E-1, 1.4248E-1, 1.6071E-1},
1306 {0.04, 1.4523E-1, 1.5237E-1, 1.5985E-1, 1.7614E-1, 1.9434E-1, 2.1473E-1, 2.3766E-1, 2.6357E-1},
1307 {0.05, 2.2082E-1, 2.3036E-1, 2.4038E-1, 2.6199E-1, 2.8590E-1, 3.1248E-1, 3.4212E-1, 3.7536E-1},
1308 {0.06, 3.0423E-1, 3.1611E-1, 3.2854E-1, 3.5522E-1, 3.8459E-1, 4.1704E-1, 4.5306E-1, 4.9326E-1},
1309 {0.08, 4.8536E-1, 5.0156E-1, 5.1846E-1, 5.5453E-1, 5.9397E-1, 6.3728E-1, 6.8507E-1, 7.3810E-1},
1310 {0.1, 6.7586E-1, 6.9596E-1, 7.1688E-1, 7.6141E-1, 8.0992E-1, 8.6301E-1, 9.2142E-1, 9.8604E-1},
1311 {0.15, 1.1544, 1.1828, 1.2122, 1.2746, 1.3424, 1.4163, 1.4974, 1.5868},
1312 {0.2, 1.6167, 1.6517, 1.6880, 1.7650, 1.8484, 1.9394, 2.0390, 2.1489},
1313 {0.3, 2.3979, 2.4432, 2.4902, 2.5899, 2.6980, 2.8159, 2.9451, 3.0876},
1314 {0.4, 3.0502, 3.1034, 3.1586, 3.2758, 3.4030, 3.5416, 3.6938, 3.8620},
1315 {0.5, 3.5466, 3.6062, 3.6681, 3.7994, 3.9421, 4.0978, 4.2688, 4.4580},
1316 {0.6, 3.9620, 4.0270, 4.0945, 4.2378, 4.3935, 4.5636, 4.7506, 4.9576},
1317 {0.7, 4.3020, 4.3715, 4.4438, 4.5974, 4.7644, 4.9470, 5.1478, 5.3703},
1318 {0.8, 4.6336, 4.7072, 4.7837, 4.9463, 5.1233, 5.3169, 5.5300, 5.7661},
1319 {1.0, 5.2041, 5.2845, 5.3682, 5.5462, 5.7400, 5.9523, 6.1863, 6.4458},
1320 {1.2, 5.6182, 5.7044, 5.7940, 5.9848, 6.1927, 6.4206, 6.6719, 6.9510},
1321 {1.4, 5.9967, 6.0876, 6.1823, 6.3839, 6.6038, 6.8451, 7.1113, 7.4071},
1322 {1.5, 6.1652, 6.2583, 6.3553, 6.5618, 6.7871, 7.0344, 7.3073, 7.6107},
1323 {1.7, 6.4686, 6.5657, 6.6668, 6.8823, 7.1175, 7.3757, 7.6609, 7.9782},
1324 {2.0, 6.8577, 6.9600, 7.0666, 7.2937, 7.5418, 7.8143, 8.1156, 8.4510},
1325 {3.0, 7.7981, 7.9134, 8.0336, 8.2901, 8.5708, 8.8796, 9.2214, 9.6027},
1326 {5.0, 8.8978, 9.0297, 9.1673, 9.4612, 9.7834, 10.1384, 10.5323, 10.9722},
1327 {7.0, 9.4819, 9.6248, 9.7739, 10.0926, 10.4423, 10.8282, 11.2565, 11.7356}
1331 {0.005, 3.6324E-5, 4.0609E-5, 4.5430E-5, 5.6969E-5, 7.1625E-5, 9.0279E-5, 1.1407E-4, 1.2834E-4, 1.4447E-4},
1332 {0.007, 1.8110E-4, 2.0001E-4, 2.2099E-4, 2.7006E-4, 3.3049E-4, 4.0498E-4, 4.9688E-4, 5.5061E-4, 6.1032E-4},
1333 {0.01, 8.6524E-4, 9.4223E-4, 1.0262E-3, 1.2178E-3, 1.4459E-3, 1.7174E-3, 2.0405E-3, 2.2245E-3, 2.4252E-3},
1334 {0.015, 4.2293E-3, 4.5314E-3, 4.8551E-3, 5.5731E-3, 6.3968E-3, 7.3414E-3, 8.4242E-3, 9.0236E-3, 9.6652E-3},
1335 {0.02, 1.1485E-2, 1.2172E-2, 1.2900E-2, 1.4486E-2, 1.6264E-2, 1.8256E-2, 2.0487E-2, 2.1702E-2, 2.2989E-2},
1336 {0.03, 3.9471E-2, 4.1270E-2, 4.3149E-2, 4.7163E-2, 5.1543E-2, 5.6423E-2, 6.1540E-2, 6.4326E-2, 6.7237E-2},
1337 {0.04, 8.4454E-2, 8.7599E-2, 9.0860E-2, 9.7747E-2, 1.0516E-1, 1.1313E-1, 1.2171E-1, 1.2625E-1, 1.3096E-1},
1338 {0.05, 1.4339E-1, 1.4795E-1, 1.5266E-1, 1.6253E-1, 1.7306E-1, 1.8430E-1, 1.9630E-1, 2.0261E-1, 2.0924E-1},
1339 {0.06, 2.1304E-1, 2.1899E-1, 2.2512E-1, 2.3794E-1, 2.5153E-1, 2.6596E-1, 2.8130E-1, 2.8934E-1, 2.9763E-1},
1340 {0.08, 3.7382E-1, 3.8241E-1, 3.9122E-1, 4.0955E-1, 4.2888E-1, 4.4928E-1, 4.7086E-1, 4.8212E-1, 4.9371E-1},
1341 {0.1, 5.5056E-1, 5.6151E-1, 5.7273E-1, 5.9601E-1, 6.2049E-1, 6.4627E-1, 6.7346E-1, 6.8762E-1, 7.0218E-1},
1342 {0.15, 1.0066, 1.0224, 1.0386, 1.0721, 1.1073, 1.1443, 1.1832, 1.2035, 1.2243},
1343 {0.2, 1.4376, 1.4572, 1.4773, 1.5188, 1.5624, 1.6083, 1.6566, 1.6817, 1.7076},
1344 {0.3, 2.1712, 2.1964, 2.2223, 2.2758, 2.3322, 2.3915, 2.4542, 2.4869, 2.5205},
1345 {0.4, 2.7500, 2.7793, 2.8094, 2.8719, 2.9377, 3.0072, 3.0807, 3.1192, 3.1587},
1346 {0.5, 3.2033, 3.2359, 3.2693, 3.3389, 3.4122, 3.4898, 3.5721, 3.6151, 3.6595},
1347 {0.6, 3.6038, 3.6391, 3.6753, 3.7506, 3.8303, 3.9146, 4.0042, 4.0511, 4.0995},
1348 {0.7, 3.9106, 3.9482, 3.9867, 4.0670, 4.1520, 4.2421, 4.3380, 4.3882, 4.4401},
1349 {0.8, 4.1790, 4.2185, 4.2590, 4.3437, 4.4333, 4.5285, 4.6298, 4.6830, 4.7380},
1350 {1.0, 4.6344, 4.6772, 4.7212, 4.8131, 4.9106, 5.0144, 5.1250, 5.1831, 5.2432},
1351 {1.2, 4.9787, 5.0242, 5.0711, 5.1689, 5.2729, 5.3837, 5.5050, 5.5642, 5.6287},
1352 {1.4, 5.2688, 5.3166, 5.3658, 5.4687, 5.5782, 5.6950, 5.8198, 5.8855, 5.9554},
1353 {1.5, 5.3966, 5.4454, 5.4957, 5.6009, 5.7128, 5.8323, 5.9601, 6.0274, 6.0972},
1354 {1.7, 5.6255, 5.6762, 5.7284, 5.8377, 5.9541, 6.0785, 6.2116, 6.2818, 6.3546},
1355 {2.0, 5.9170, 5.9701, 6.0248, 6.1395, 6.2618, 6.3925, 6.5327, 6.6066, 6.6833},
1356 {3.0, 6.6210, 6.6801, 6.7411, 6.8692, 7.0062, 7.1529, 7.3107, 7.3941, 7.4807},
1357 {5.0, 7.4620, 7.5288, 7.5977, 7.7428, 7.8982, 8.0653, 8.2454, 8.3409, 8.4402},
1358 {7.0, 7.7362, 7.8079, 7.8821, 8.0383, 8.2061, 8.3866, 8.5816, 8.6850, 8.7927}
1362 {0.005, 1.8339E-4, 2.3330E-4, 2.9738E-4, 3.7977E-4, 4.2945E-4, 4.8582E-4, 6.2244E-4, 7.9858E-4, 1.0258E-3},
1363 {0.007, 7.5042E-4, 9.2355E-4, 1.1375E-3, 1.4021E-3, 1.5570E-3, 1.7292E-3, 2.1335E-3, 2.6335E-3, 3.2515E-3},
1364 {0.01, 2.8829E-3, 3.4275E-3, 4.0758E-3, 4.8457E-3, 5.2839E-3, 5.7617E-3, 6.8504E-3, 8.1442E-3, 9.6816E-3},
1365 {0.015, 1.1087E-2, 1.2716E-2, 1.4581E-2, 1.6717E-2, 1.7898E-2, 1.9163E-2, 2.1964E-2, 2.5173E-2, 2.8851E-2},
1366 {0.02, 2.5786E-2, 2.8922E-2, 3.2435E-2, 3.6371E-2, 3.8514E-2, 4.0784E-2, 4.5733E-2, 5.1288E-2, 5.7531E-2},
1367 {0.03, 7.3461E-2, 8.0264E-2, 8.7705E-2, 9.5852E-2, 1.0021E-1, 1.0478E-1, 1.1458E-1, 1.2535E-1, 1.3721E-1},
1368 {0.04, 1.4094E-1, 1.5172E-1, 1.6336E-1, 1.7596E-1, 1.8265E-1, 1.8962E-1, 2.0445E-1, 2.2058E-1, 2.3818E-1},
1369 {0.05, 2.2289E-1, 2.3762E-1, 2.5344E-1, 2.7045E-1, 2.7944E-1, 2.8877E-1, 3.0855E-1, 3.2995E-1, 3.5318E-1},
1370 {0.06, 3.1503E-1, 3.3361E-1, 3.5346E-1, 3.7473E-1, 3.8594E-1, 3.9756E-1, 4.2212E-1, 4.4861E-1, 4.7727E-1},
1371 {0.08, 5.1793E-1, 5.4368E-1, 5.7109E-1, 6.0032E-1, 6.1569E-1, 6.3159E-1, 6.6512E-1, 7.0119E-1, 7.4012E-1},
1372 {0.1, 7.3258E-1, 7.6481E-1, 7.9907E-1, 8.3556E-1, 8.5472E-1, 8.7454E-1, 9.1630E-1, 9.6119E-1, 1.0096},
1373 {0.15, 1.2677, 1.3137, 1.3626, 1.4147, 1.4421, 1.4703, 1.5300, 1.5942, 1.6636},
1374 {0.2, 1.7615, 1.8188, 1.8797, 1.9446, 1.9788, 2.0142, 2.0889, 2.1694, 2.2567},
1375 {0.3, 2.5909, 2.6658, 2.7457, 2.8312, 2.8762, 2.9231, 3.0222, 3.1295, 3.2463},
1376 {0.4, 3.2417, 3.3302, 3.4249, 3.5266, 3.5803, 3.6361, 3.7546, 3.8835, 4.0242},
1377 {0.5, 3.7527, 3.8523, 3.9591, 4.0741, 4.1350, 4.1983, 4.3330, 4.4799, 4.6408},
1378 {0.6, 4.2013, 4.3103, 4.4274, 4.5537, 4.6206, 4.6904, 4.8390, 5.0013, 5.1796},
1379 {0.7, 4.5493, 4.6664, 4.7925, 4.9286, 5.0009, 5.0762, 5.2370, 5.4129, 5.6066},
1380 {0.8, 4.8537, 4.9780, 5.1119, 5.2568, 5.3338, 5.4141, 5.5857, 5.7738, 5.9811},
1381 {1.0, 5.3701, 5.5066, 5.6540, 5.8138, 5.8989, 5.9878, 6.1780, 6.3870, 6.6179},
1382 {1.2, 5.7648, 5.9114, 6.0701, 6.2424, 6.3343, 6.4303, 6.6361, 6.8626, 7.1137},
1383 {1.4, 6.0976, 6.2530, 6.4214, 6.6044, 6.7021, 6.8043, 7.0237, 7.2655, 7.5338},
1384 {1.5, 6.2447, 6.4041, 6.5768, 6.7647, 6.8650, 6.9700, 7.1954, 7.4442, 7.7203},
1385 {1.7, 6.5087, 6.6752, 6.8558, 7.0526, 7.1578, 7.2679, 7.5045, 7.7660, 8.0565},
1386 {2.0, 6.8458, 7.0218, 7.2129, 7.4213, 7.5328, 7.6496, 7.9010, 8.1791, 8.4886},
1387 {3.0, 7.6647, 7.8644, 8.0819, 8.3189, 8.4475, 8.5814, 8.8702, 9.1908, 9.5488},
1388 {5.0, 8.6515, 8.8816, 9.1330, 9.4090, 9.5572, 9.7132, 10.0504, 10.4259, 10.8466},
1389 {7.0, 9.0221, 9.2724, 9.5464, 9.8477, 10.0099, 10.1805, 10.5499, 10.9622, 11.4250}
1393 {0.005, 1.3190E-3, 1.4961E-3, 1.6974E-3, 2.1858E-3, 2.8163E-3, 3.6302E-3, 4.6814E-3, 6.0395E-3},
1394 {0.007, 4.0158E-3, 4.4623E-3, 4.9592E-3, 6.1257E-3, 7.5675E-3, 9.3502E-3, 1.1556E-2, 1.4290E-2},
1395 {0.01, 1.1509E-2, 1.2548E-2, 1.3681E-2, 1.6263E-2, 1.9336E-2, 2.2999E-2, 2.7370E-2, 3.2603E-2},
1396 {0.015, 3.3070E-2, 3.5408E-2, 3.7914E-2, 4.3483E-2, 4.9898E-2, 5.7304E-2, 6.5884E-2, 7.5861E-2},
1397 {0.02, 6.4555E-2, 6.8394E-2, 7.2472E-2, 8.1413E-2, 9.1539E-2, 1.0304E-1, 1.1617E-1, 1.3121E-1},
1398 {0.03, 1.5030E-1, 1.5101E-1, 1.5844E-1, 1.7451E-1, 1.9244E-1, 2.1244E-1, 2.3496E-1, 2.6044E-1},
1399 {0.04, 2.5743E-1, 2.6774E-1, 2.7855E-1, 3.0180E-1, 3.2751E-1, 3.5608E-1, 3.8803E-1, 4.2401E-1},
1400 {0.05, 3.7846E-1, 3.9195E-1, 4.0607E-1, 4.3635E-1, 4.6973E-1, 5.0672E-1, 5.4798E-1, 5.9436E-1},
1401 {0.06, 5.0839E-1, 5.2497E-1, 5.4230E-1, 5.7943E-1, 6.2028E-1, 6.6549E-1, 7.1589E-1, 7.7252E-1},
1402 {0.08, 7.8230E-1, 8.0474E-1, 8.2818E-1, 8.7836E-1, 9.3355E-1, 9.9462E-1, 1.0627, 1.1394},
1403 {0.1, 1.0621, 1.0900, 1.1192, 1.1816, 1.2503, 1.3265, 1.4116, 1.5076},
1404 {0.15, 1.7389, 1.7790, 1.8210, 1.9112, 2.0108, 2.1217, 2.2462, 2.3876},
1405 {0.2, 2.3516, 2.4024, 2.4556, 2.5701, 2.6971, 2.8391, 2.9994, 3.1822},
1406 {0.3, 3.3741, 3.4427, 3.5148, 3.6706, 3.8445, 4.0404, 4.2631, 4.5193},
1407 {0.4, 4.1788, 4.2620, 4.3496, 4.5398, 4.7530, 4.9944, 5.2703, 5.5895},
1408 {0.5, 4.8180, 4.9137, 5.0146, 5.2341, 5.4811, 5.7618, 6.0840, 6.4583},
1409 {0.6, 5.3765, 5.4830, 5.5954, 5.8406, 6.1173, 6.4326, 6.7958, 7.2191},
1410 {0.7, 5.8208, 5.9369, 6.0596, 6.3275, 6.6306, 6.9769, 7.3767, 7.8440},
1411 {0.8, 6.2109, 6.3355, 6.4674, 6.7558, 7.0827, 7.4570, 7.8900, 8.3972},
1412 {1.0, 6.8747, 7.0142, 7.1621, 7.4861, 7.8546, 8.2778, 8.7690, 9.3464},
1413 {1.2, 7.3933, 7.5454, 7.7068, 8.0612, 8.4652, 8.9302, 9.4713, 10.1090},
1414 {1.4, 7.8331, 7.9967, 8.1694, 8.5502, 8.9851, 9.4866, 10.0713, 10.7619},
1415 {1.5, 8.0286, 8.1967, 8.3753, 8.7681, 9.2181, 9.7352, 10.3399, 11.0546},
1416 {1.7, 8.3813, 8.5585, 8.7469, 9.1618, 9.6367, 10.1856, 10.8270, 11.5863},
1417 {2.0, 8.8352, 9.0245, 9.2260, 9.6701, 10.1793, 10.7688, 11.4590, 12.2775},
1418 {3.0, 9.9511, 10.1714, 10.4062, 10.9254, 11.5229, 12.2172, 13.0332, 14.0048},
1419 {5.0, 11.3211, 11.5818, 11.8601, 12.4771, 13.1898, 14.0213, 15.0024, 16.1752},
1420 {7.0, 11.9480, 12.2357, 12.5432, 13.2260, 14.0164, 14.9404, 16.0330, 17.3420}
1424 for(i=0; i<nEtaK; ++i) {
1431 for(j=0; j<nK; ++j) {
1433 if(j < 10) { b = bk2[i][10-j]; }
1434 else { b = bk1[i][20-j]; }
1436 CK[j][i] = SK[j]*loget + TK[j] -
b;
1439 ZK[j] = et*(et*et*CK[j][i] - et*UK[j] - VK[j]);
1448 for(j=0; j<nL; ++j) {
1461 CL[j][i] = c - bs - 3.0*
b;
1463 VL[j] = et*(et*CL[j][i] - UL[j]);
1475 12.0, 12.0, 12.0, 12.0, 11.9, 11.7, 11.5, 11.2, 10.8, 10.4,
1476 10.0, 9.51, 8.97, 8.52, 8.03, 7.46, 6.95, 6.53, 6.18, 5.87,
1477 5.61, 5.39, 5.19, 5.01, 4.86, 4.72, 4.62, 4.53, 4.44, 4.38,
1478 4.32, 4.26, 4.20, 4.15, 4.1, 4.04, 4.00, 3.95, 3.93, 3.91,
1479 3.90, 3.89, 3.89, 3.88, 3.88, 3.88, 3.88, 3.88, 3.89, 3.89,
1482 75.5, 61.9, 52.2, 45.1, 39.6, 35.4, 31.9, 29.1, 27.2, 25.8,
1483 24.5, 23.6, 22.7, 22.0, 21.4, 20.9, 20.5, 20.2, 19.9, 19.7,
1484 19.5, 19.3, 19.2, 19.1, 18.4, 18.8, 18.7, 18.6, 18.5, 18.4,
1487 for(i=0; i<53; ++i) {HM[i] = hm[i];}
1488 for(i=0; i<31; ++i) {HN[i] = hn[i];}
1490 const G4double xzk[34] = { 11.7711,
1491 13.3669, 15.5762, 17.1715, 18.7667, 20.8523, 23.0606, 24.901, 26.9861, 29.4394, 31.77,
1492 34.3457, 37.4119, 40.3555, 42.3177, 44.7705, 47.2234, 50.78, 53.8458, 56.4214, 58.3834,
1493 60.9586, 63.6567, 66.5998, 68.807, 71.8728, 74.5706, 77.3911, 81.8056, 85.7297, 89.8988,
1494 93.4549, 96.2753, 99.709};
1495 const G4double yzk[34] = { 0.70663,
1496 0.72033, 0.73651, 0.74647, 0.75518, 0.76388, 0.77258, 0.78129, 0.78625, 0.7937, 0.79991,
1497 0.80611, 0.8123, 0.8185, 0.82097, 0.82467, 0.82838, 0.83457, 0.83702, 0.84198, 0.8432,
1498 0.84565, 0.84936, 0.85181, 0.85303, 0.85548, 0.85794, 0.8604, 0.86283, 0.86527, 0.86646,
1499 0.86891, 0.87011, 0.87381};
1501 const G4double xzl[36] = { 15.5102,
1502 16.7347, 17.9592, 19.551, 21.0204, 22.6122, 24.9388, 27.3878, 29.5918, 31.3061, 32.898,
1503 34.4898, 36.2041, 38.4082, 40.3674, 42.5714, 44.898, 47.4694, 49.9184, 52.7347, 55.9184,
1504 59.3469, 61.9184, 64.6122, 67.4286, 71.4694, 75.2653, 78.3265, 81.2653, 85.551, 88.7347,
1505 91.551, 94.2449, 96.449, 98.4082, 99.7551};
1506 const G4double yzl[36] = { 0.29875,
1507 0.31746, 0.33368, 0.35239, 0.36985, 0.38732, 0.41102, 0.43472, 0.45343, 0.4659, 0.47713,
1508 0.4896, 0.50083, 0.51331, 0.52328, 0.53077, 0.54075, 0.54823, 0.55572, 0.56445, 0.57193,
1509 0.58191, 0.5869, 0.59189, 0.60062, 0.60686, 0.61435, 0.61809, 0.62183, 0.62931, 0.6343,
1510 0.6368, 0.64054, 0.64304, 0.64428, 0.64678};
1514 for(i=0; i<34; ++i) { ThetaK->
PutValues(i, xzk[i], yzk[i]); }
1515 for(i=0; i<36; ++i) { ThetaL->
PutValues(i, xzl[i], yzl[i]); }
1519 const G4double coseb[14] = {0.0,0.05,0.1,0.15,0.2,0.3,0.4,0.5,0.6,0.8,
1521 const G4double cosxi[14] = {1.0000, 0.9905, 0.9631, 0.9208, 0.8680,
1522 0.7478, 0.6303, 0.5290, 0.4471, 0.3323,
1523 0.2610, 0.2145, 0.1696, 0.1261};
1524 for(i=0; i<14; ++i) {
1525 COSEB[i] = coseb[i];
1526 COSXI[i] = cosxi[i];
1529 for(i=1; i<100; ++i) {
1530 Z23[i] = std::pow(
G4double(i),0.23);