Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4EMDissociation.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * *
21 // * Parts of this code which have been developed by QinetiQ Ltd *
22 // * under contract to the European Space Agency (ESA) are the *
23 // * intellectual property of ESA. Rights to use, copy, modify and *
24 // * redistribute this software for general public use are granted *
25 // * in compliance with any licensing, distribution and development *
26 // * policy adopted by the Geant4 Collaboration. This code has been *
27 // * written by QinetiQ Ltd for the European Space Agency, under ESA *
28 // * contract 17191/03/NL/LvH (Aurora Programme). *
29 // * *
30 // * By using, copying, modifying or distributing the software (or *
31 // * any work based on the software) you agree to acknowledge its *
32 // * use in resulting scientific publications, and indicate your *
33 // * acceptance of all terms of the Geant4 Software license. *
34 // ********************************************************************
35 //
36 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37 //
38 // MODULE: G4EMDissociation.cc
39 //
40 // Version: B.1
41 // Date: 15/04/04
42 // Author: P R Truscott
43 // Organisation: QinetiQ Ltd, UK
44 // Customer: ESA/ESTEC, NOORDWIJK
45 // Contract: 17191/03/NL/LvH
46 //
47 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48 //
49 // CHANGE HISTORY
50 // --------------
51 //
52 // 17 October 2003, P R Truscott, QinetiQ Ltd, UK
53 // Created.
54 //
55 // 15 March 2004, P R Truscott, QinetiQ Ltd, UK
56 // Beta release
57 //
58 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
60 //
61 #include "G4EMDissociation.hh"
62 #include "G4PhysicalConstants.hh"
63 #include "G4SystemOfUnits.hh"
64 #include "G4Evaporation.hh"
65 #include "G4FermiBreakUp.hh"
66 #include "G4StatMF.hh"
67 #include "G4ParticleDefinition.hh"
68 #include "G4LorentzVector.hh"
69 #include "G4PhysicsFreeVector.hh"
71 #include "G4Proton.hh"
72 #include "G4Neutron.hh"
73 #include "G4ParticleTable.hh"
74 #include "G4IonTable.hh"
76 #include "G4DecayProducts.hh"
77 #include "G4DynamicParticle.hh"
78 #include "G4Fragment.hh"
80 #include "Randomize.hh"
81 #include "globals.hh"
82 
84 
85  // Send message to stdout to advise that the G4EMDissociation model is being
86  // used.
87  PrintWelcomeMessage();
88 
89  // No de-excitation handler has been supplied - define the default handler.
90  theExcitationHandler = new G4ExcitationHandler;
91  G4Evaporation* theEvaporation = new G4Evaporation;
92  G4FermiBreakUp* theFermiBreakUp = new G4FermiBreakUp;
93  G4StatMF* theMF = new G4StatMF;
94  theExcitationHandler->SetEvaporation(theEvaporation);
95  theExcitationHandler->SetFermiModel(theFermiBreakUp);
96  theExcitationHandler->SetMultiFragmentation(theMF);
97  theExcitationHandler->SetMaxAandZForFermiBreakUp(12, 6);
98  theExcitationHandler->SetMinEForMultiFrag(5.0*MeV);
99  handlerDefinedInternally = true;
100 
101  // This EM dissociation model needs access to the cross-sections held in
102  // G4EMDissociationCrossSection.
103  dissociationCrossSection = new G4EMDissociationCrossSection;
104  thePhotonSpectrum = new G4EMDissociationSpectrum;
105 
106  // Set the minimum and maximum range for the model (despite nomanclature, this
107  // is in energy per nucleon number).
108  SetMinEnergy(100.0*MeV);
109  SetMaxEnergy(500.0*GeV);
110 
111  // Set the default verbose level to 0 - no output.
112  verboseLevel = 0;
113 }
114 
115 /*
116 G4EMDissociation::G4EMDissociation(const G4EMDissociation& emd)
117  : G4HadronicInteraction(emd)
118 {
119  if (emd.theExcitationHandler != 0) {
120  theExcitationHandler = new G4ExcitationHandler;
121  *theExcitationHandler = *emd.theExcitationHandler;
122  }
123 
124  handlerDefinedInternally = emd.handlerDefinedInternally;
125 
126  if (emd.dissociationCrossSection != 0) {
127  dissociationCrossSection = new G4EMDissociationCrossSection;
128  *dissociationCrossSection = *emd.dissociationCrossSection;
129  }
130 
131  if (emd.thePhotonSpectrum !- 0) {
132  thePhotonSpectrum = new G4EMDissociationSpectrum;
133  *thePhotonSpectrum = *emd.thePhotonSpectrum;
134 }
135 */
136 
138 {
139 //
140 //
141 // Send message to stdout to advise that the G4EMDissociation model is being
142 // used.
143 //
144  PrintWelcomeMessage();
145 
146  theExcitationHandler = aExcitationHandler;
147  handlerDefinedInternally = false;
148 //
149 //
150 // This EM dissociation model needs access to the cross-sections held in
151 // G4EMDissociationCrossSection.
152 //
153  dissociationCrossSection = new G4EMDissociationCrossSection;
154  thePhotonSpectrum = new G4EMDissociationSpectrum;
155 //
156 //
157 // Set the minimum and maximum range for the model (despite nomanclature, this
158 // is in energy per nucleon number).
159 //
160  SetMinEnergy(100.0*MeV);
161  SetMaxEnergy(500.0*GeV);
162 //
163 //
164 // Set the default verbose level to 0 - no output.
165 //
166  verboseLevel = 0;
167 }
168 
169 
171  if (handlerDefinedInternally) delete theExcitationHandler;
172  // delete dissociationCrossSection;
173  // Cross section deleted by G4CrossSectionRegistry; don't do it here
174  // Bug reported by Gong Ding in Bug Report #1339
175  delete thePhotonSpectrum;
176 }
177 
178 
180  (const G4HadProjectile &theTrack, G4Nucleus &theTarget)
181 {
182 //
183 //
184 // The secondaries will be returned in G4HadFinalState &theParticleChange -
185 // initialise this.
186 //
187  theParticleChange.Clear();
188  theParticleChange.SetStatusChange(stopAndKill);
189 //
190 //
191 // Get relevant information about the projectile and target (A, Z) and
192 // energy/nuc, momentum, velocity, Lorentz factor and rest-mass of the
193 // projectile.
194 //
195  const G4ParticleDefinition *definitionP = theTrack.GetDefinition();
196  const G4double AP = definitionP->GetBaryonNumber();
197  const G4double ZP = definitionP->GetPDGCharge();
198  G4LorentzVector pP = theTrack.Get4Momentum();
199  G4double E = theTrack.GetKineticEnergy()/AP;
200  G4double MP = theTrack.GetTotalEnergy() - E*AP;
201  G4double b = pP.beta();
202  G4double AT = theTarget.GetA_asInt();
203  G4double ZT = theTarget.GetZ_asInt();
205 //
206 //
207 // Depending upon the verbosity level, output the initial information on the
208 // projectile and target.
209 //
210  if (verboseLevel >= 2)
211  {
212  G4cout.precision(6);
213  G4cout <<"########################################"
214  <<"########################################"
215  <<G4endl;
216  G4cout <<"IN G4EMDissociation" <<G4endl;
217  G4cout <<"Initial projectile A=" <<AP
218  <<", Z=" <<ZP
219  <<G4endl;
220  G4cout <<"Initial target A=" <<AT
221  <<", Z=" <<ZT
222  <<G4endl;
223  G4cout <<"Projectile momentum and Energy/nuc = " <<pP <<" ," <<E <<G4endl;
224  }
225 //
226 //
227 // Initialise the variables which will be used with the phase-space decay and
228 // to boost the secondaries from the interaction.
229 //
230  G4ParticleDefinition *typeNucleon = NULL;
231  G4ParticleDefinition *typeDaughter = NULL;
232  G4double Eg = 0.0;
233  G4double mass = 0.0;
234  G4ThreeVector boost = G4ThreeVector(0.0, 0.0, 0.0);
235 //
236 //
237 // Determine the cross-sections at the giant dipole and giant quadrupole
238 // resonance energies for the projectile and then target. The information is
239 // initially provided in the G4PhysicsFreeVector individually for the E1
240 // and E2 fields. These are then summed.
241 //
242  G4double bmin = thePhotonSpectrum->GetClosestApproach(AP, ZP, AT, ZT, b);
243  G4PhysicsFreeVector *crossSectionP = dissociationCrossSection->
244  GetCrossSectionForProjectile(AP, ZP, AT, ZT, b, bmin);
245  G4PhysicsFreeVector *crossSectionT = dissociationCrossSection->
246  GetCrossSectionForTarget(AP, ZP, AT, ZT, b, bmin);
247 
248  G4double totCrossSectionP = (*crossSectionP)[0]+(*crossSectionP)[1];
249  G4double totCrossSectionT = (*crossSectionT)[0]+(*crossSectionT)[1];
250 //
251 //
252 // Now sample whether the interaction involved EM dissociation of the projectile
253 // or the target.
254 //
255  if (G4UniformRand() <
256  totCrossSectionP / (totCrossSectionP + totCrossSectionT))
257  {
258 //
259 //
260 // It was the projectile which underwent EM dissociation. Define the Lorentz
261 // boost to be applied to the secondaries, and sample whether a proton or a
262 // neutron was ejected. Then determine the energy of the virtual gamma ray
263 // which passed from the target nucleus ... this will be used to define the
264 // excitation of the projectile.
265 //
266  mass = MP;
267  if (G4UniformRand() < dissociationCrossSection->
268  GetWilsonProbabilityForProtonDissociation (AP, ZP))
269  {
270  if (verboseLevel >= 2)
271  G4cout <<"Projectile underwent EM dissociation producing a proton"
272  <<G4endl;
273  typeNucleon = G4Proton::ProtonDefinition();
274  typeDaughter = G4ParticleTable::GetParticleTable()->
275  GetIon((G4int) ZP-1, (G4int) AP-1, 0.0);
276  }
277  else
278  {
279  if (verboseLevel >= 2)
280  G4cout <<"Projectile underwent EM dissociation producing a neutron"
281  <<G4endl;
282  typeNucleon = G4Neutron::NeutronDefinition();
283  typeDaughter = G4ParticleTable::GetParticleTable()->
284  GetIon((G4int) ZP, (G4int) AP-1, 0.0);
285  }
286  if (G4UniformRand() < (*crossSectionP)[0]/totCrossSectionP)
287  {
288  Eg = crossSectionP->GetLowEdgeEnergy(0);
289  if (verboseLevel >= 2)
290  G4cout <<"Transition type was E1" <<G4endl;
291  }
292  else
293  {
294  Eg = crossSectionP->GetLowEdgeEnergy(1);
295  if (verboseLevel >= 2)
296  G4cout <<"Transition type was E2" <<G4endl;
297  }
298 //
299 //
300 // We need to define a Lorentz vector with the original momentum, but total
301 // energy includes the projectile and virtual gamma. This is then used
302 // to calculate the boost required for the secondaries.
303 //
304  pP.setE(pP.e()+Eg);
305  boost = pP.findBoostToCM();
306  }
307  else
308  {
309 //
310 //
311 // It was the target which underwent EM dissociation. Sample whether a
312 // proton or a neutron was ejected. Then determine the energy of the virtual
313 // gamma ray which passed from the projectile nucleus ... this will be used to
314 // define the excitation of the target.
315 //
316  mass = MT;
317  if (G4UniformRand() < dissociationCrossSection->
318  GetWilsonProbabilityForProtonDissociation (AT, ZT))
319  {
320  if (verboseLevel >= 2)
321  G4cout <<"Target underwent EM dissociation producing a proton"
322  <<G4endl;
323  typeNucleon = G4Proton::ProtonDefinition();
324  typeDaughter = G4ParticleTable::GetParticleTable()->
325  GetIon((G4int) ZT-1, (G4int) AT-1, 0.0);
326  }
327  else
328  {
329  if (verboseLevel >= 2)
330  G4cout <<"Target underwent EM dissociation producing a neutron"
331  <<G4endl;
332  typeNucleon = G4Neutron::NeutronDefinition();
333  typeDaughter = G4ParticleTable::GetParticleTable()->
334  GetIon((G4int) ZT, (G4int) AT-1, 0.0);
335  }
336  if (G4UniformRand() < (*crossSectionT)[0]/totCrossSectionT)
337  {
338  Eg = crossSectionT->GetLowEdgeEnergy(0);
339  if (verboseLevel >= 2)
340  G4cout <<"Transition type was E1" <<G4endl;
341  }
342  else
343  {
344  Eg = crossSectionT->GetLowEdgeEnergy(1);
345  if (verboseLevel >= 2)
346  G4cout <<"Transition type was E2" <<G4endl;
347  }
348 //
349 //
350 // Add the projectile to theParticleChange, less the energy of the
351 // not-so-virtual gamma-ray. Not that at the moment, no lateral momentum
352 // is transferred between the projectile and target nuclei.
353 //
354  G4ThreeVector v = pP.vect();
355  v.setMag(1.0);
356  G4DynamicParticle *changedP = new G4DynamicParticle
357  (const_cast<G4ParticleDefinition*>(definitionP), v, E*AP-Eg);
358  theParticleChange.AddSecondary (changedP);
359  if (verboseLevel >= 2)
360  {
361  G4cout <<"Projectile change:" <<G4endl;
362  changedP->DumpInfo();
363  }
364  }
365 //
366 //
367 // Perform a two-body decay based on the restmass energy of the parent and
368 // gamma-ray, and the masses of the daughters. In the frame of reference of
369 // the nucles, the angular distribution is sampled isotropically, but the
370 // the nucleon and secondary nucleus are boosted if they've come from the
371 // projectile.
372 //
373  G4double e = mass + Eg;
374  G4double mass1 = typeNucleon->GetPDGMass();
375  G4double mass2 = typeDaughter->GetPDGMass();
376  G4double pp = (e+mass1+mass2)*(e+mass1-mass2)*
377  (e-mass1+mass2)*(e-mass1-mass2)/(4.0*e*e);
378  if (pp < 0.0)
379  {
380  pp = 1.0*eV;
381 // if (verboseLevel >`= 1)
382 // {
383 // G4cout <<"IN G4EMDissociation::ApplyYoursef" <<G4endl;
384 // G4cout <<"Error in mass of secondaries compared with primary:" <<G4endl;
385 // G4cout <<"Rest mass of primary = " <<mass <<" MeV" <<G4endl;
386 // G4cout <<"Virtual gamma energy = " <<Eg <<" MeV" <<G4endl;
387 // G4cout <<"Rest mass of secondary #1 = " <<mass1 <<" MeV" <<G4endl;
388 // G4cout <<"Rest mass of secondary #2 = " <<mass2 <<" MeV" <<G4endl;
389 // }
390  }
391  else
392  pp = std::sqrt(pp);
393  G4double costheta = 2.*G4UniformRand()-1.0;
394  G4double sintheta = std::sqrt((1.0 - costheta)*(1.0 + costheta));
395  G4double phi = 2.0*pi*G4UniformRand()*rad;
396  G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi),costheta);
397  G4DynamicParticle *dynamicNucleon =
398  new G4DynamicParticle(typeNucleon, direction*pp);
399  dynamicNucleon->Set4Momentum(dynamicNucleon->Get4Momentum().boost(-boost));
400  G4DynamicParticle *dynamicDaughter =
401  new G4DynamicParticle(typeDaughter, -direction*pp);
402  dynamicDaughter->Set4Momentum(dynamicDaughter->Get4Momentum().boost(-boost));
403 //
404 //
405 // The "decay" products have to be transferred to the G4HadFinalState object.
406 // Furthermore, the residual nucleus should be de-excited.
407 //
408  theParticleChange.AddSecondary (dynamicNucleon);
409  if (verboseLevel >= 2)
410  {
411  G4cout <<"Nucleon from the EMD process:" <<G4endl;
412  dynamicNucleon->DumpInfo();
413  }
414 
415  G4Fragment *theFragment = new
416  G4Fragment((G4int) typeDaughter->GetBaryonNumber(),
417  (G4int) typeDaughter->GetPDGCharge(), dynamicDaughter->Get4Momentum());
418  if (verboseLevel >= 2)
419  {
420  G4cout <<"Dynamic properties of the prefragment:" <<G4endl;
421  G4cout.precision(6);
422  dynamicDaughter->DumpInfo();
423  G4cout <<"Nuclear properties of the prefragment:" <<G4endl;
424  G4cout <<theFragment <<G4endl;
425  }
426  G4ReactionProductVector *products =
427  theExcitationHandler->BreakItUp(*theFragment);
428  delete theFragment;
429  theFragment = NULL;
430 
431  G4ReactionProductVector::iterator iter;
432  for (iter = products->begin(); iter != products->end(); ++iter)
433  {
434  G4DynamicParticle *secondary =
435  new G4DynamicParticle((*iter)->GetDefinition(),
436  (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
437  theParticleChange.AddSecondary (secondary);
438  }
439 
440  if (verboseLevel >= 2)
441  G4cout <<"########################################"
442  <<"########################################"
443  <<G4endl;
444 
445  return &theParticleChange;
446 }
448 //
449 void G4EMDissociation::PrintWelcomeMessage ()
450 {
451  G4cout <<G4endl;
452  G4cout <<" ****************************************************************"
453  <<G4endl;
454  G4cout <<" EM dissociation model for nuclear-nuclear interactions activated"
455  <<G4endl;
456  G4cout <<" (Written by QinetiQ Ltd for the European Space Agency)"
457  <<G4endl;
458  G4cout <<" ****************************************************************"
459  <<G4endl;
460  G4cout << G4endl;
461 
462  return;
463 }
465 //