Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4DeuteronEvaporationProbability.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 // J.M. Quesada (August2008). Based on:
29 //
30 // Hadronic Process: Nuclear De-excitations
31 // by V. Lara (Oct 1998)
32 //
33 // Modified:
34 // 03-09-2008 J.M. Quesada for external choice of inverse cross section option
35 // 17-11-2010 V.Ivanchenko integer Z and A
36 
37 
39 #include "G4SystemOfUnits.hh"
40 
42  G4EvaporationProbability(2,1,3,&theCoulombBarrier) // A,Z,Gamma (fixed JMQ)
43 {
44  ResidualA = ResidualZ = theA = theZ = FragmentA = 0;
45  ResidualAthrd = FragmentAthrd = 0.0;
46 }
47 
49 {}
50 
51 G4double G4DeuteronEvaporationProbability::CalcAlphaParam(const G4Fragment & fragment)
52 {
53  return 1.0 + CCoeficient(fragment.GetZ_asInt()-GetZ());
54 }
55 
56 G4double G4DeuteronEvaporationProbability::CalcBetaParam(const G4Fragment & )
57 {
58  return 0.0;
59 }
60 
61 G4double G4DeuteronEvaporationProbability::CCoeficient(G4int aZ)
62 {
63  // Data comes from
64  // Dostrovsky, Fraenkel and Friedlander
65  // Physical Review, vol 116, num. 3 1959
66  //
67  // const G4int size = 5;
68  // G4double Zlist[5] = { 10.0, 20.0, 30.0, 50.0, 70.0};
69  // G4double Cp[5] = { 0.50, 0.28, 0.20, 0.15, 0.10};
70  // C for deuteron is equal to C for protons divided by 2
71  G4double C = 0.0;
72 
73  if (aZ >= 70) {
74  C = 0.10;
75  } else {
76  C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375;
77  }
78 
79  return C/2.0;
80 
81 }
82 
83 
85 //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections
86 //OPT=0 Dostrovski's parameterization
87 //OPT=1,2 Chatterjee's paramaterization
88 //OPT=3,4 Kalbach's parameterization
89 //
90 G4double
91 G4DeuteronEvaporationProbability::CrossSection(const G4Fragment & fragment, G4double K)
92 {
93  theA=GetA();
94  theZ=GetZ();
95  ResidualA=fragment.GetA_asInt()-theA;
96  ResidualZ=fragment.GetZ_asInt()-theZ;
97 
98  ResidualAthrd=fG4pow->Z13(ResidualA);
99  FragmentA=fragment.GetA_asInt();
100  FragmentAthrd=fG4pow->Z13(FragmentA);
101 
102  if (OPTxs==0) {std::ostringstream errOs;
103  errOs << "We should'n be here (OPT =0) at evaporation cross section calculation (deuterons)!!"
104  <<G4endl;
105  throw G4HadronicException(__FILE__, __LINE__, errOs.str());
106  return 0.;}
107  if( OPTxs==1 || OPTxs==2) return G4DeuteronEvaporationProbability::GetOpt12( K);
108  else if (OPTxs==3 || OPTxs==4) return G4DeuteronEvaporationProbability::GetOpt34( K);
109  else{
110  std::ostringstream errOs;
111  errOs << "BAD Deuteron CROSS SECTION OPTION AT EVAPORATION!!" <<G4endl;
112  throw G4HadronicException(__FILE__, __LINE__, errOs.str());
113  return 0.;
114  }
115 }
116 
117 //
118 //********************* OPT=1,2 : Chatterjee's cross section ********************
119 //(fitting to cross section from Bechetti & Greenles OM potential)
120 
121 G4double G4DeuteronEvaporationProbability::GetOpt12(G4double K)
122 {
123  G4double Kc = K;
124 
125  // JMQ xsec is set constat above limit of validity
126  if (K > 50*MeV) { Kc = 50*MeV; }
127 
128  G4double landa ,mu ,nu ,p , Ec,q,r,ji,xs;
129 
130  G4double p0 = -38.21;
131  G4double p1 = 922.6;
132  G4double p2 = -2804.;
133  G4double landa0 = -0.0323;
134  G4double landa1 = -5.48;
135  G4double mum0 = 336.1;
136  G4double mu1 = 0.48;
137  G4double nu0 = 524.3;
138  G4double nu1 = -371.8;
139  G4double nu2 = -5.924;
140  G4double delta=1.2;
141 
142  Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
143  p = p0 + p1/Ec + p2/(Ec*Ec);
144  landa = landa0*ResidualA + landa1;
145  G4double resmu1 = fG4pow->powZ(ResidualA,mu1);
146  mu = mum0*resmu1;
147  nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
148  q = landa - nu/(Ec*Ec) - 2*p*Ec;
149  r = mu + 2*nu/Ec + p*(Ec*Ec);
150 
151  ji=std::max(Kc,Ec);
152  if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
153  else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
154 
155  if (xs <0.0) {xs=0.0;}
156 
157  return xs;
158 }
159 
160 // *********** OPT=3,4 : Kalbach's cross sections (from PRECO code)*************
161 G4double G4DeuteronEvaporationProbability::GetOpt34(G4double K)
162 // ** d from o.m. of perey and perey
163 {
164 
165  G4double landa, mu, nu, p ,signor(1.),sig;
166  G4double ec,ecsq,xnulam,etest(0.),a;
167  G4double b,ecut,cut,ecut2,geom,elab;
168 
169  G4double flow = 1.e-18;
170  G4double spill= 1.e+18;
171 
172  G4double p0 = 0.798;
173  G4double p1 = 420.3;
174  G4double p2 = -1651.;
175  G4double landa0 = 0.00619;
176  G4double landa1 = -7.54;
177  G4double mum0 = 583.5;
178  G4double mu1 = 0.337;
179  G4double nu0 = 421.8;
180  G4double nu1 = -474.5;
181  G4double nu2 = -3.592;
182 
183  G4double ra=0.80;
184 
185  //JMQ 13/02/09 increase of reduced radius to lower the barrier
186  // ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
187  ec = 1.44 * theZ * ResidualZ / (1.7*ResidualAthrd+ra);
188  ecsq = ec * ec;
189  p = p0 + p1/ec + p2/ecsq;
190  landa = landa0*ResidualA + landa1;
191  a = fG4pow->powZ(ResidualA,mu1);
192  mu = mum0 * a;
193  nu = a* (nu0+nu1*ec+nu2*ecsq);
194  xnulam = nu / landa;
195  if (xnulam > spill) { xnulam=0.; }
196  if (xnulam >= flow) { etest = 1.2 *std::sqrt(xnulam); }
197 
198  a = -2.*p*ec + landa - nu/ecsq;
199  b = p*ecsq + mu + 2.*nu/ec;
200  ecut = 0.;
201  cut = a*a - 4.*p*b;
202  if (cut > 0.) { ecut = std::sqrt(cut); }
203  ecut = (ecut-a) / (p+p);
204  ecut2 = ecut;
205  //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
206  //ecut<0 means that there is no cut with energy axis, i.e. xs is set
207  //to 0 bellow minimum
208  // if (cut < 0.) ecut2 = ecut - 2.;
209  if (cut < 0.) { ecut2 = ecut; }
210  elab = K * FragmentA / G4double(ResidualA);
211  sig = 0.;
212 
213  if (elab <= ec) { //start for E<Ec
214  if (elab > ecut2) { sig = (p*elab*elab+a*elab+b) * signor; }
215  } //end for E<Ec
216  else { //start for E>Ec
217  sig = (landa*elab+mu+nu/elab) * signor;
218  geom = 0.;
219  if (xnulam < flow || elab < etest) { return sig; }
220  geom = std::sqrt(theA*K);
221  geom = 1.23*ResidualAthrd + ra + 4.573/geom;
222  geom = 31.416 * geom * geom;
223  sig = std::max(geom,sig);
224  } //end for E>Ec
225  return sig;
226 }
227