42 fUpperLimit(100000*
GeV), fLowerLimit(0.1*
MeV),
43 fRadiusConst(1.08*
fermi),
44 fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), fProductionXsc(0.0),
45 fDiffractionXsc(0.0), fHadronNucleonXsc(0.0)
111 return fInelasticXsc;
154 if(fInelasticXsc > 0.)
156 ratio = (fInelasticXsc - fProductionXsc)/fInelasticXsc;
157 if(ratio < 0.) ratio = 0.;
167 outFile <<
"G4ComponentGGNuclNuclXsc calculates total, inelastic and\n"
168 <<
"elastic cross sections for nucleus-nucleus collisions using\n"
169 <<
"the Glauber model with Gribov corrections. It is valid for\n"
170 <<
"all incident energies above 100 keV./n";
179 G4bool applicable =
false;
182 if (kineticEnergy >= fLowerLimit && Z > 1) applicable =
true;
230 if( pN < 0. ) pN = 0.;
233 if( tN < 0. ) tN = 0.;
262 nucleusSquare = cofTotal*
pi*( pR*pR + tR*tR );
264 ratio = sigma/nucleusSquare;
265 xsection = nucleusSquare*std::log( 1. + ratio );
266 fTotalXsc = xsection;
269 fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
272 fElasticXsc = fTotalXsc - fInelasticXsc;
285 sigma = (pZ*tZ+pN*tN)*ppInXsc + (pZ*tN+pN*tZ)*npInXsc;
287 ratio = sigma/nucleusSquare;
288 fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
290 if (fElasticXsc < 0.) fElasticXsc = 0.;
299 return fInelasticXsc;
319 G4double totEcm = std::sqrt(pM*pM + tM*tM + 2.*pElab*tM);
331 if( totTcm <= bC ) ratio = 0.;
332 else ratio = 1. - bC/totTcm;
335 if( ratio < 0.) ratio = 0.;
349 G4double sigma, cofInelastic = 2.4, cofTotal = 2.0, nucleusSquare, ratio;
358 if( pN < 0. ) pN = 0.;
361 if( tN < 0. ) tN = 0.;
369 nucleusSquare = cofTotal*
pi*( pR*pR + tR*tR );
370 ratio = sigma/nucleusSquare;
371 fInelasticXsc = nucleusSquare*std::log(1. + cofInelastic*ratio)/cofInelastic;
372 G4double difratio = ratio/(1.+ratio);
374 fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
376 if (fInelasticXsc > 0.) ratio = fDiffractionXsc/fInelasticXsc;
389 G4double sigma, cofInelastic = 2.4, cofTotal = 2.0, nucleusSquare, ratio;
398 if( pN < 0. ) pN = 0.;
401 if( tN < 0. ) tN = 0.;
409 nucleusSquare = cofTotal*
pi*( pR*pR + tR*tR );
410 ratio = sigma/nucleusSquare;
411 fInelasticXsc = nucleusSquare*std::log(1. + cofInelastic*ratio)/cofInelastic;
414 ratio = sigma/nucleusSquare;
415 fProductionXsc = nucleusSquare*std::log(1. + cofInelastic*ratio)/cofInelastic;
417 if (fInelasticXsc > fProductionXsc) ratio = (fInelasticXsc-fProductionXsc)/fInelasticXsc;
419 if ( ratio < 0. ) ratio = 0.;
457 GetIonTable()->GetIonMass(Zt, At);
458 targ_mass = 0.939*
GeV;
465 proj_momentum /=
GeV;
468 if(pParticle == theNeutron)
470 xsection =
G4double(At)*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
472 else if(pParticle == theProton)
474 xsection =
G4double(At)*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
508 if(pParticle == theNeutron)
512 xsection = ( 35.80 + B*std::pow(std::log(sMand/s0),2.)
513 + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
517 xsection = (35.45 + B*std::pow(std::log(sMand/s0),2.)
518 + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
521 else if(pParticle == theProton)
525 xsection = (35.45 + B*std::pow(std::log(sMand/s0),2.)
526 + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
531 xsection = (35.80 + B*std::pow(std::log(sMand/s0),2.)
532 + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
560 G4double proj_energy = proj_mass + pTkin;
561 G4double proj_momentum = std::sqrt(pTkin*(pTkin+2*proj_mass));
566 proj_momentum /=
GeV;
577 if( proj_momentum >= 373.)
581 else if( proj_momentum >= 10. )
587 if (proj_momentum >= 10.) {
589 A0 = 100. - B0*std::log(3.0e7);
591 xsection = A0 + B0*std::log(proj_energy) - 11
592 + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
593 0.93827*0.93827,-0.165);
598 if(pParticle == tParticle)
600 if( proj_momentum < 0.73 )
602 hnXscv = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
604 else if( proj_momentum < 1.05 )
606 hnXscv = 23 + 40*(std::log(proj_momentum/0.73))*
607 (std::log(proj_momentum/0.73));
612 75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
618 if( proj_momentum < 0.8 )
620 hpXscv = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
622 else if( proj_momentum < 1.4 )
624 hpXscv = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
629 20.8*(std::pow(proj_momentum,2.0)-1.35)/
630 (std::pow(proj_momentum,2.50)+0.95);
648 G4int absPDGcode = std::abs(PDGcode);
657 G4double LogPlab = std::log( Plab );
658 G4double sqrLogPlab = LogPlab * LogPlab;
662 G4double NumberOfTargetProtons = Zt;
663 G4double NumberOfTargetNucleons = At;
664 G4double NumberOfTargetNeutrons = NumberOfTargetNucleons - NumberOfTargetProtons;
666 if(NumberOfTargetNeutrons < 0.) NumberOfTargetNeutrons = 0.;
668 G4double Xtotal = 0., Xelastic = 0., Xinelastic =0.;
670 if( absPDGcode > 1000 )
672 G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) +
673 0.522*sqrLogPlab - 4.51*LogPlab;
675 G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) +
676 0.513*sqrLogPlab - 4.27*LogPlab;
678 G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) +
679 0.169*sqrLogPlab - 1.85*LogPlab;
681 G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) +
682 0.169*sqrLogPlab - 1.85*LogPlab;
684 Xtotal = ( NumberOfTargetProtons * XtotPP +
685 NumberOfTargetNeutrons * XtotPN );
687 Xelastic = ( NumberOfTargetProtons * XelPP +
688 NumberOfTargetNeutrons * XelPN );
691 Xinelastic = Xtotal - Xelastic;
692 if(Xinelastic < 0.) Xinelastic = 0.;
707 G4double cubicrAt = std::pow (At, oneThird);
710 R = fRadiusConst*cubicrAt;
725 R *= ( a1 + b1*std::exp( -(At - meanA)/tauA1) );
729 R *= ( 1.0 + b2*( 1. - std::exp( (At - meanA)/tauA2) ) );
733 R *= ( 1.0 + b3*( 1. - std::exp( (At - meanA)/tauA3) ) );
759 G4double cubicrAt = std::pow (At, oneThird);
762 R = fRadiusConst*cubicrAt;
769 R *= ( 0.8 + 0.2*std::exp( -(At - meanA)/tauA) );
773 R *= ( 1.0 + 0.1*( 1. - std::exp( (At - meanA)/tauA) ) );
788 G4double R, r0, a11, a12, a13, a2, a3;
800 if (std::abs(A-1.) < 0.5)
return 0.89*
fermi;
801 else if(std::abs(A-2.) < 0.5)
return 2.13*
fermi;
802 else if(std::abs(Z-1.) < 0.5 && std::abs(A-3.) < 0.5)
return 1.80*
fermi;
804 else if(std::abs(Z-2.) < 0.5 && std::abs(A-3.) < 0.5)
return 1.96*
fermi;
805 else if(std::abs(Z-2.) < 0.5 && std::abs(A-4.) < 0.5)
return 1.68*
fermi;
807 else if(std::abs(Z-3.) < 0.5)
return 2.40*
fermi;
808 else if(std::abs(Z-4.) < 0.5)
return 2.51*
fermi;
810 else if( 10. < A && A <= 16. ) r0 = a11*( 1 - std::pow(A, -2./3.) )*
fermi;
811 else if( 15. < A && A <= 20. ) r0 = a12*( 1 - std::pow(A, -2./3.) )*
fermi;
812 else if( 20. < A && A <= 30. ) r0 = a13*( 1 - std::pow(A, -2./3.) )*
fermi;
815 R = r0*std::pow( A, 1./3. );
821 R = r0*std::pow(A, 0.27);
835 if (std::abs(A-1.) < 0.5)
return 0.89*
fermi;
836 else if(std::abs(A-2.) < 0.5)
return 2.13*
fermi;
837 else if(std::abs(Z-1.) < 0.5 && std::abs(A-3.) < 0.5)
return 1.80*
fermi;
839 else if(std::abs(Z-2.) < 0.5 && std::abs(A-3.) < 0.5)
return 1.96*
fermi;
840 else if(std::abs(Z-2.) < 0.5 && std::abs(A-4.) < 0.5)
return 1.68*
fermi;
842 else if(std::abs(Z-3.) < 0.5)
return 2.40*
fermi;
843 else if(std::abs(Z-4.) < 0.5)
return 2.51*
fermi;
845 else return 1.24*std::pow(A, 0.28 )*
fermi;
857 G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
858 G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt );
874 G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
875 G4double sMand = mp*mp + mt*mt + 2*Elab*mt ;