Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4ChipsHyperonInelasticXS.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28 // GEANT4 tag $Name: not supported by cvs2svn $
29 //
30 // ****************************************************************************************
31 // Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for
32 // Hyperon-nuclear interactions. Original author: M. Kossov
33 // -------------------------------------------------------------------------------------
34 //
35 
37 #include "G4SystemOfUnits.hh"
38 #include "G4DynamicParticle.hh"
39 #include "G4ParticleDefinition.hh"
40 #include "G4Lambda.hh"
41 #include "G4SigmaPlus.hh"
42 #include "G4SigmaMinus.hh"
43 #include "G4SigmaZero.hh"
44 #include "G4XiMinus.hh"
45 #include "G4XiZero.hh"
46 #include "G4OmegaMinus.hh"
47 
48 // factory
49 #include "G4CrossSectionFactory.hh"
50 //
52 
54 {
55  // Initialization of the
56  lastLEN=0; // Pointer to the lastArray of LowEn CS
57  lastHEN=0; // Pointer to the lastArray of HighEn CS
58  lastN=0; // The last N of calculated nucleus
59  lastZ=0; // The last Z of calculated nucleus
60  lastP=0.; // Last used in cross section Momentum
61  lastTH=0.; // Last threshold momentum
62  lastCS=0.; // Last value of the Cross Section
63  lastI=0; // The last position in the DAMDB
64  LEN = new std::vector<G4double*>;
65  HEN = new std::vector<G4double*>;
66 }
67 
69 {
70  G4int lens=LEN->size();
71  for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
72  delete LEN;
73 
74  G4int hens=HEN->size();
75  for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
76  delete HEN;
77 }
78 
80  const G4Element*,
81  const G4Material*)
82 {
83  G4ParticleDefinition* particle = Pt->GetDefinition();
84  if (particle == G4Lambda::Lambda())
85  {
86  return true;
87  }
88  else if(particle == G4SigmaPlus::SigmaPlus())
89  {
90  return true;
91  }
92  else if(particle == G4SigmaMinus::SigmaMinus())
93  {
94  return true;
95  }
96  else if(particle == G4SigmaZero::SigmaZero())
97  {
98  return true;
99  }
100  else if(particle == G4XiMinus::XiMinus())
101  {
102  return true;
103  }
104  else if(particle == G4XiZero::XiZero())
105  {
106  return true;
107  }
108  else if(particle == G4OmegaMinus::OmegaMinus())
109  {
110  return true;
111  }
112  return false;
113 }
114 
115 // The main member function giving the collision cross section (P is in IU, CS is in mb)
116 // Make pMom in independent units ! (Now it is MeV)
118  const G4Isotope*,
119  const G4Element*,
120  const G4Material*)
121 {
122  G4double pMom=Pt->GetTotalMomentum();
123  G4int tgN = A - tgZ;
124  G4int pdg = Pt->GetDefinition()->GetPDGEncoding();
125 
126  return GetChipsCrossSection(pMom, tgZ, tgN, pdg);
127 }
128 
130 {
131  static G4int j; // A#0f Z/N-records already tested in AMDB
132  static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops)
133  static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops)
134  static std::vector <G4double> colP; // Vector of last momenta for the reaction
135  static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
136  static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
137  // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
138 
139  G4bool in=false; // By default the isotope must be found in the AMDB
140  if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
141  {
142  in = false; // By default the isotope haven't be found in AMDB
143  lastP = 0.; // New momentum history (nothing to compare with)
144  lastN = tgN; // The last N of the calculated nucleus
145  lastZ = tgZ; // The last Z of the calculated nucleus
146  lastI = colN.size(); // Size of the Associative Memory DB in the heap
147  j = 0; // A#0f records found in DB for this projectile
148 
149  if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
150  {
151  if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
152  {
153  lastI=i; // Remember the index for future fast/last use
154  lastTH =colTH[i]; // The last THreshold (A-dependent)
155 
156  if(pMom<=lastTH)
157  {
158  return 0.; // Energy is below the Threshold value
159  }
160  lastP =colP [i]; // Last Momentum (A-dependent)
161  lastCS =colCS[i]; // Last CrossSect (A-dependent)
162  in = true; // This is the case when the isotop is found in DB
163  // Momentum pMom is in IU ! @@ Units
164  lastCS=CalculateCrossSection(-1,j,PDG,lastZ,lastN,pMom); // read & update
165 
166  if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
167  {
168  lastCS=0.;
169  lastTH=pMom;
170  }
171  break; // Go out of the LOOP
172  }
173  j++; // Increment a#0f records found in DB
174  }
175  if(!in) // This isotope has not been calculated previously
176  {
178  lastCS=CalculateCrossSection(0,j,PDG,lastZ,lastN,pMom); //calculate & create
179  //if(lastCS>0.) // It means that the AMBD was initialized
180  //{
181 
182  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
183  colN.push_back(tgN);
184  colZ.push_back(tgZ);
185  colP.push_back(pMom);
186  colTH.push_back(lastTH);
187  colCS.push_back(lastCS);
188  //} // M.K. Presence of H1 with high threshold breaks the syncronization
189  return lastCS*millibarn;
190  } // End of creation of the new set of parameters
191  else
192  {
193  colP[lastI]=pMom;
194  colCS[lastI]=lastCS;
195  }
196  } // End of parameters udate
197  else if(pMom<=lastTH)
198  {
199  return 0.; // Momentum is below the Threshold Value -> CS=0
200  }
201  else // It is the last used -> use the current tables
202  {
203  lastCS=CalculateCrossSection(1,j,PDG,lastZ,lastN,pMom); // Only read and UpdateDB
204  lastP=pMom;
205  }
206  return lastCS*millibarn;
207 }
208 
209 // The main member function giving the gamma-A cross section (E in GeV, CS in mb)
210 G4double G4ChipsHyperonInelasticXS::CalculateCrossSection(G4int F, G4int I,
211  G4int, G4int targZ, G4int targN, G4double Momentum)
212 {
213  static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
214  static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
215  static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
216  static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
217  static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
218  static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
219  static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
220  static const G4int nH=224; // A#of HEN points in lnE
221  static const G4double milP=std::log(Pmin);// Low logarithm energy for the HEN part
222  static const G4double malP=std::log(Pmax);// High logarithm energy (each 2.75 percent)
223  static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
224  static const G4double milPG=std::log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
225  G4double sigma=0.;
226  if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
227  //G4double A=targN+targZ; // A of the target
228  if(F<=0) // This isotope was not the last used isotop
229  {
230  if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
231  {
232  G4int sync=LEN->size();
233  if(sync<=I) G4cerr<<"*!*G4QPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
234  lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
235  lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
236  }
237  else // This isotope wasn't calculated before => CREATE
238  {
239  lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
240  lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
241  // --- Instead of making a separate function ---
242  G4double P=THmiG; // Table threshold in GeV/c
243  for(G4int k=0; k<nL; k++)
244  {
245  lastLEN[k] = CrossSectionLin(targZ, targN, P);
246  P+=dPG;
247  }
248  G4double lP=milPG;
249  for(G4int n=0; n<nH; n++)
250  {
251  lastHEN[n] = CrossSectionLog(targZ, targN, lP);
252  lP+=dlP;
253  }
254  // --- End of possible separate function
255  // *** The synchronization check ***
256  G4int sync=LEN->size();
257  if(sync!=I)
258  {
259  G4cerr<<"***G4QHyperNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
260  <<", N="<<targN<<", F="<<F<<G4endl;
261  //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
262  }
263  LEN->push_back(lastLEN); // remember the Low Energy Table
264  HEN->push_back(lastHEN); // remember the High Energy Table
265  } // End of creation of the new set of parameters
266  } // End of parameters udate
267  // =--------------------------= NOW the Magic Formula =------------------------------=
268  if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
269  else if (Momentum<Pmin) // High Energy region
270  {
271  sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
272  }
273  else if (Momentum<Pmax) // High Energy region
274  {
275  G4double lP=std::log(Momentum);
276  sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
277  }
278  else // UHE region (calculation, not frequent)
279  {
280  G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
281  sigma=CrossSectionFormula(targZ, targN, P, std::log(P));
282  }
283  if(sigma<0.) return 0.;
284  return sigma;
285 }
286 
287 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
288 G4double G4ChipsHyperonInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
289 {
290  G4double lP=std::log(P);
291  return CrossSectionFormula(tZ, tN, P, lP);
292 }
293 
294 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
295 G4double G4ChipsHyperonInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
296 {
297  G4double P=std::exp(lP);
298  return CrossSectionFormula(tZ, tN, P, lP);
299 }
300 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
301 G4double G4ChipsHyperonInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
302  G4double P, G4double lP)
303 {
304  G4double sigma=0.;
305  if(tZ==1 && !tN) // Hyperon-P interaction from G4QuasiElastRatios
306  {
307  G4double ld=lP-3.5;
308  G4double ld2=ld*ld;
309  G4double p2=P*P;
310  G4double p4=p2*p2;
311  G4double sp=std::sqrt(P);
312  G4double El=(.0557*ld2+6.72+99./p2)/(1.+2./sp+2./p4);
313  G4double To=(.3*ld2+38.2+900./sp)/(1.+27./sp+3./p4);
314  sigma=To-El;
315  }
316  else if(tZ<97 && tN<152) // General solution
317  {
318  G4double d=lP-4.2;
319  G4double p2=P*P;
320  G4double p4=p2*p2;
321  G4double sp=std::sqrt(P);
322  G4double ssp=std::sqrt(sp);
323  G4double a=tN+tZ; // A of the target
324  G4double al=std::log(a);
325  G4double sa=std::sqrt(a);
326  G4double a2=a*a;
327  G4double a2s=a2*sa;
328  G4double a4=a2*a2;
329  G4double a8=a4*a4;
330  G4double c=(170.+3600./a2s)/(1.+65./a2s);
331  G4double gg=42.*(std::exp(al*0.8)+4.E-8*a4)/(1.+28./a)/(1.+5.E-5*a2);
332  G4double e=390.; // Defolt values for deutrons
333  G4double r=0.27;
334  G4double h=2.E-7;
335  G4double t=0.3;
336  if(tZ>1 || tN>1)
337  {
338  e=380.+18.*a2/(1.+a2/60.)/(1.+2.E-19*a8);
339  r=0.15;
340  h=1.E-8*a2/(1.+a2/17.)/(1.+3.E-20*a8);
341  t=(.2+.00056*a2)/(1.+a2*.0006);
342  }
343  sigma=(c+d*d)/(1.+t/ssp+r/p4)+(gg+e*std::exp(-6.*P))/(1.+h/p4/p4);
344 #ifdef pdebug
345  G4cout<<"G4QHyperonNucCS::CSForm: A="<<a<<",P="<<P<<",CS="<<sigma<<",c="<<c<<",g="<<gg
346  <<",d="<<d<<",r="<<r<<",e="<<e<<",h="<<h<<G4endl;
347 #endif
348  }
349  else
350  {
351  G4cerr<<"-Warning-G4QHyperonNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
352  sigma=0.;
353  }
354  if(sigma<0.) return 0.;
355  return sigma;
356 }
357 
358 G4double G4ChipsHyperonInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
359 {
360  if(DX<=0. || N<2)
361  {
362  G4cerr<<"***G4ChipsHyperonInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
363  return Y[0];
364  }
365 
366  G4int N2=N-2;
367  G4double d=(X-X0)/DX;
368  G4int j=static_cast<int>(d);
369  if (j<0) j=0;
370  else if(j>N2) j=N2;
371  d-=j; // excess
372  G4double yi=Y[j];
373  G4double sigma=yi+(Y[j+1]-yi)*d;
374 
375  return sigma;
376 }