49 :
G4VEmModel(nam),fParticleChange(0),smallEnergy(4.*
MeV),isInitialised(false),
50 crossSectionHandler(0),meanFreePathTable(0)
53 highEnergyLimit = 100 *
GeV;
64 if(verboseLevel > 0) {
65 G4cout <<
"Triplet Gamma conversion is constructed " <<
G4endl
67 << lowEnergyLimit /
MeV <<
" MeV - "
68 << highEnergyLimit /
GeV <<
" GeV"
77 if (crossSectionHandler)
delete crossSectionHandler;
87 G4cout <<
"Calling G4BoldyshevTripletModel::Initialise()" <<
G4endl;
89 if (crossSectionHandler)
91 crossSectionHandler->
Clear();
92 delete crossSectionHandler;
98 crossSectionHandler->
Initialise(0,lowEnergyLimit,100.*
GeV,400);
99 G4String crossSectionFile =
"tripdata/pp-trip-cs-";
100 crossSectionHandler->
LoadData(crossSectionFile);
104 if (verboseLevel > 0) {
105 G4cout <<
"Loaded cross section files for Livermore GammaConversion" <<
G4endl;
106 G4cout <<
"To obtain the total cross section this should be used only " << G4endl
107 <<
"in connection with G4NuclearGammaConversion " <<
G4endl;
110 if (verboseLevel > 0) {
111 G4cout <<
"Livermore Electron Gamma Conversion model is initialized " << G4endl
118 if(isInitialised)
return;
120 isInitialised =
true;
131 if (verboseLevel > 3) {
132 G4cout <<
"Calling ComputeCrossSectionPerAtom() of G4BoldyshevTripletModel"
135 if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit)
return 0;
153 if (verboseLevel > 3)
154 G4cout <<
"Calling SampleSecondaries() of G4BoldyshevTripletModel" <<
G4endl;
162 G4double positronTotEnergy, electronTotEnergy, thetaEle, thetaPos;
163 G4double ener_re=0., theta_re, phi_re, phi;
176 G4double SigmaTot = (28./9.) * std::log ( 2.* photonEnergy / electron_mass_c2 ) - 218. / 27. ;
177 G4double X_0 = 2. * ( sqrt(momentumThreshold_N*momentumThreshold_N + 1) -1 );
178 G4double SigmaQ = (82./27. - (14./9.) * log (X_0) + 4./15.*X_0 - 0.0348 * X_0 * X_0);
182 if (recoilProb >= SigmaQ/SigmaTot)
186 ( energyThreshold +
electron_mass_c2 ) / (photonEnergy*momentumThreshold_c) );
192 G4double are, bre, loga, f1_re, greject, cost;
198 cost = pow(cosThetaMax,r1);
199 theta_re = acos(cost);
200 are = 1./(14.*cost*cost);
201 bre = (1.-5.*cost*cost)/(2.*cost);
202 loga = log((1.+ cost)/(1.- cost));
203 f1_re = 1. - bre*loga;
205 if ( theta_re >= 4.47*CLHEP::pi/180.)
211 }
while(greject < r2);
223 G4double fp = 1. - sint2*loga/(2.*cost) ;
224 rt = (1.-cos(2.*phi_re)*fp/f1_re)/(2.*
pi) ;
231 G4double D2 = 4.*S * electron_mass_c2*electron_mass_c2
233 *(S - electron_mass_c2*electron_mass_c2)*sin(theta_re)*sin(theta_re);
234 ener_re = electron_mass_c2 * (S + electron_mass_c2*
electron_mass_c2)/sqrt(D2);
239 G4double dxEle_re=sin(theta_re)*std::cos(phi_re),dyEle_re=sin(theta_re)*std::sin(phi_re), dzEle_re=cos(theta_re);
241 G4double electronRKineEnergy = std::max(0.,ener_re - electron_mass_c2) ;
243 G4ThreeVector electronRDirection (dxEle_re, dyEle_re, dzEle_re);
244 electronRDirection.
rotateUz(photonDirection);
248 electronRKineEnergy);
249 fvect->push_back(particle3);
262 G4double t = 0.5*log(momentumThreshold_N + sqrt(momentumThreshold_N*momentumThreshold_N+1));
264 G4cout << 0.5*asinh(momentumThreshold_N) <<
" " << t <<
G4endl;
266 G4double J1 = 0.5*(t*cosh(t)/sinh(t) - log(2.*sinh(t)));
267 G4double J2 = (-2./3.)*log(2.*sinh(t)) + t*cosh(t)/sinh(t) + (sinh(t)-t*pow(cosh(t),3))/(3.*pow(sinh(t),3));
274 G4double b1 = 16. - 3.*b - 36.*b*re*n + 36.*b*pow(re,2.)*pow(n,2.) +
277 G4double c1 = (-6. + 12.*re*n + b + 2*
a)*pow(b,2.);
278 epsilon = (pow(c1,1./3.))/(2.*b) + (b-4.)/(2.*pow(c1,1./3.))+0.5;
280 G4double photonEnergy1 = photonEnergy - ener_re ;
281 positronTotEnergy = epsilon*photonEnergy1;
282 electronTotEnergy = photonEnergy1 - positronTotEnergy;
284 G4double momento_e = sqrt(electronTotEnergy*electronTotEnergy -
285 electron_mass_c2*electron_mass_c2) ;
286 G4double momento_p = sqrt(positronTotEnergy*positronTotEnergy -
287 electron_mass_c2*electron_mass_c2) ;
289 thetaEle = acos((sqrt(p0*p0/(momento_e*momento_e) +1.)- p0/momento_e)) ;
290 thetaPos = acos((sqrt(p0*p0/(momento_p*momento_p) +1.)- p0/momento_p)) ;
293 G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
294 G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
301 G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ;
306 electronDirection.
rotateUz(photonDirection);
313 G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
318 positronDirection.
rotateUz(photonDirection);
322 positronDirection, positronKineEnergy);
326 fvect->push_back(particle1);
327 fvect->push_back(particle2);