Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4BetheHeitlerModel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 // -------------------------------------------------------------------
29 //
30 // GEANT4 Class file
31 //
32 //
33 // File name: G4BetheHeitlerModel
34 //
35 // Author: Vladimir Ivanchenko on base of Michel Maire code
36 //
37 // Creation date: 15.03.2005
38 //
39 // Modifications:
40 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivantchenko)
41 // 24-06-05 Increase number of bins to 200 (V.Ivantchenko)
42 // 16-11-05 replace shootBit() by G4UniformRand() mma
43 // 04-12-05 SetProposedKineticEnergy(0.) for the killed photon (mma)
44 // 20-02-07 SelectRandomElement is called for any initial gamma energy
45 // in order to have selected element for polarized model (VI)
46 // 25-10-10 Removed unused table, added element selector (VI)
47 //
48 // Class Description:
49 //
50 // -------------------------------------------------------------------
51 //
52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
53 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
54 
55 #include "G4BetheHeitlerModel.hh"
56 #include "G4PhysicalConstants.hh"
57 #include "G4SystemOfUnits.hh"
58 #include "G4Electron.hh"
59 #include "G4Positron.hh"
60 #include "G4Gamma.hh"
61 #include "Randomize.hh"
63 
64 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
65 
66 using namespace std;
67 
69  const G4String& nam)
70  : G4VEmModel(nam)
71 {
72  fParticleChange = 0;
73  theGamma = G4Gamma::Gamma();
74  thePositron = G4Positron::Positron();
75  theElectron = G4Electron::Electron();
76 }
77 
78 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
79 
81 {}
82 
83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
84 
86  const G4DataVector& cuts)
87 {
88  if(!fParticleChange) { fParticleChange = GetParticleChangeForGamma(); }
90 }
91 
92 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
93 
94 G4double
96  G4double GammaEnergy, G4double Z,
98 // Calculates the microscopic cross section in GEANT4 internal units.
99 // A parametrized formula from L. Urban is used to estimate
100 // the total cross section.
101 // It gives a good description of the data from 1.5 MeV to 100 GeV.
102 // below 1.5 MeV: sigma=sigma(1.5MeV)*(GammaEnergy-2electronmass)
103 // *(GammaEnergy-2electronmass)
104 {
105  static const G4double GammaEnergyLimit = 1.5*MeV;
106  G4double xSection = 0.0 ;
107  if ( Z < 0.9 || GammaEnergy <= 2.0*electron_mass_c2 ) { return xSection; }
108 
109  static const G4double
110  a0= 8.7842e+2*microbarn, a1=-1.9625e+3*microbarn, a2= 1.2949e+3*microbarn,
111  a3=-2.0028e+2*microbarn, a4= 1.2575e+1*microbarn, a5=-2.8333e-1*microbarn;
112 
113  static const G4double
114  b0=-1.0342e+1*microbarn, b1= 1.7692e+1*microbarn, b2=-8.2381 *microbarn,
115  b3= 1.3063 *microbarn, b4=-9.0815e-2*microbarn, b5= 2.3586e-3*microbarn;
116 
117  static const G4double
118  c0=-4.5263e+2*microbarn, c1= 1.1161e+3*microbarn, c2=-8.6749e+2*microbarn,
119  c3= 2.1773e+2*microbarn, c4=-2.0467e+1*microbarn, c5= 6.5372e-1*microbarn;
120 
121  G4double GammaEnergySave = GammaEnergy;
122  if (GammaEnergy < GammaEnergyLimit) { GammaEnergy = GammaEnergyLimit; }
123 
124  G4double X=log(GammaEnergy/electron_mass_c2), X2=X*X, X3=X2*X, X4=X3*X, X5=X4*X;
125 
126  G4double F1 = a0 + a1*X + a2*X2 + a3*X3 + a4*X4 + a5*X5,
127  F2 = b0 + b1*X + b2*X2 + b3*X3 + b4*X4 + b5*X5,
128  F3 = c0 + c1*X + c2*X2 + c3*X3 + c4*X4 + c5*X5;
129 
130  xSection = (Z + 1.)*(F1*Z + F2*Z*Z + F3);
131 
132  if (GammaEnergySave < GammaEnergyLimit) {
133 
134  X = (GammaEnergySave - 2.*electron_mass_c2)
135  / (GammaEnergyLimit - 2.*electron_mass_c2);
136  xSection *= X*X;
137  }
138 
139  if (xSection < 0.) { xSection = 0.; }
140  return xSection;
141 }
142 
143 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
144 
145 void G4BetheHeitlerModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
146  const G4MaterialCutsCouple* couple,
147  const G4DynamicParticle* aDynamicGamma,
148  G4double,
149  G4double)
150 // The secondaries e+e- energies are sampled using the Bethe - Heitler
151 // cross sections with Coulomb correction.
152 // A modified version of the random number techniques of Butcher & Messel
153 // is used (Nuc Phys 20(1960),15).
154 //
155 // GEANT4 internal units.
156 //
157 // Note 1 : Effects due to the breakdown of the Born approximation at
158 // low energy are ignored.
159 // Note 2 : The differential cross section implicitly takes account of
160 // pair creation in both nuclear and atomic electron fields.
161 // However triplet prodution is not generated.
162 {
163  const G4Material* aMaterial = couple->GetMaterial();
164 
165  G4double GammaEnergy = aDynamicGamma->GetKineticEnergy();
166  G4ParticleMomentum GammaDirection = aDynamicGamma->GetMomentumDirection();
167 
168  G4double epsil ;
169  G4double epsil0 = electron_mass_c2/GammaEnergy ;
170  if(epsil0 > 1.0) { return; }
171 
172  // do it fast if GammaEnergy < 2. MeV
173  static const G4double Egsmall=2.*MeV;
174 
175  // select randomly one element constituing the material
176  const G4Element* anElement = SelectRandomAtom(aMaterial, theGamma, GammaEnergy);
177 
178  if (GammaEnergy < Egsmall) {
179 
180  epsil = epsil0 + (0.5-epsil0)*G4UniformRand();
181 
182  } else {
183  // now comes the case with GammaEnergy >= 2. MeV
184 
185  // Extract Coulomb factor for this Element
186  G4double FZ = 8.*(anElement->GetIonisation()->GetlogZ3());
187  if (GammaEnergy > 50.*MeV) { FZ += 8.*(anElement->GetfCoulomb()); }
188 
189  // limits of the screening variable
190  G4double screenfac = 136.*epsil0/(anElement->GetIonisation()->GetZ3());
191  G4double screenmax = exp ((42.24 - FZ)/8.368) - 0.952 ;
192  G4double screenmin = min(4.*screenfac,screenmax);
193 
194  // limits of the energy sampling
195  G4double epsil1 = 0.5 - 0.5*sqrt(1. - screenmin/screenmax) ;
196  G4double epsilmin = max(epsil0,epsil1) , epsilrange = 0.5 - epsilmin;
197 
198  //
199  // sample the energy rate of the created electron (or positron)
200  //
201  //G4double epsil, screenvar, greject ;
202  G4double screenvar, greject ;
203 
204  G4double F10 = ScreenFunction1(screenmin) - FZ;
205  G4double F20 = ScreenFunction2(screenmin) - FZ;
206  G4double NormF1 = max(F10*epsilrange*epsilrange,0.);
207  G4double NormF2 = max(1.5*F20,0.);
208 
209  do {
210  if ( NormF1/(NormF1+NormF2) > G4UniformRand() ) {
211  epsil = 0.5 - epsilrange*pow(G4UniformRand(), 0.333333);
212  screenvar = screenfac/(epsil*(1-epsil));
213  greject = (ScreenFunction1(screenvar) - FZ)/F10;
214 
215  } else {
216  epsil = epsilmin + epsilrange*G4UniformRand();
217  screenvar = screenfac/(epsil*(1-epsil));
218  greject = (ScreenFunction2(screenvar) - FZ)/F20;
219  }
220 
221  } while( greject < G4UniformRand() );
222 
223  } // end of epsil sampling
224 
225  //
226  // fixe charges randomly
227  //
228 
229  G4double ElectTotEnergy, PositTotEnergy;
230  if (G4UniformRand() > 0.5) {
231 
232  ElectTotEnergy = (1.-epsil)*GammaEnergy;
233  PositTotEnergy = epsil*GammaEnergy;
234 
235  } else {
236 
237  PositTotEnergy = (1.-epsil)*GammaEnergy;
238  ElectTotEnergy = epsil*GammaEnergy;
239  }
240 
241  //
242  // scattered electron (positron) angles. ( Z - axis along the parent photon)
243  //
244  // universal distribution suggested by L. Urban
245  // (Geant3 manual (1993) Phys211),
246  // derived from Tsai distribution (Rev Mod Phys 49,421(1977))
247 
248  G4double u;
249  const G4double a1 = 0.625 , a2 = 3.*a1 , d = 27. ;
250 
251  if (9./(9.+d) >G4UniformRand()) u= - log(G4UniformRand()*G4UniformRand())/a1;
252  else u= - log(G4UniformRand()*G4UniformRand())/a2;
253 
254  G4double TetEl = u*electron_mass_c2/ElectTotEnergy;
255  G4double TetPo = u*electron_mass_c2/PositTotEnergy;
256  G4double Phi = twopi * G4UniformRand();
257  G4double dxEl= sin(TetEl)*cos(Phi),dyEl= sin(TetEl)*sin(Phi),dzEl=cos(TetEl);
258  G4double dxPo=-sin(TetPo)*cos(Phi),dyPo=-sin(TetPo)*sin(Phi),dzPo=cos(TetPo);
259 
260  //
261  // kinematic of the created pair
262  //
263  // the electron and positron are assumed to have a symetric
264  // angular distribution with respect to the Z axis along the parent photon.
265 
266  G4double ElectKineEnergy = max(0.,ElectTotEnergy - electron_mass_c2);
267 
268  G4ThreeVector ElectDirection (dxEl, dyEl, dzEl);
269  ElectDirection.rotateUz(GammaDirection);
270 
271  // create G4DynamicParticle object for the particle1
272  G4DynamicParticle* aParticle1= new G4DynamicParticle(
273  theElectron,ElectDirection,ElectKineEnergy);
274 
275  // the e+ is always created (even with Ekine=0) for further annihilation.
276 
277  G4double PositKineEnergy = max(0.,PositTotEnergy - electron_mass_c2);
278 
279  G4ThreeVector PositDirection (dxPo, dyPo, dzPo);
280  PositDirection.rotateUz(GammaDirection);
281 
282  // create G4DynamicParticle object for the particle2
283  G4DynamicParticle* aParticle2= new G4DynamicParticle(
284  thePositron,PositDirection,PositKineEnergy);
285 
286  // Fill output vector
287  fvect->push_back(aParticle1);
288  fvect->push_back(aParticle2);
289 
290  // kill incident photon
291  fParticleChange->SetProposedKineticEnergy(0.);
292  fParticleChange->ProposeTrackStatus(fStopAndKill);
293 }
294 
295 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......