Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4BEChargedChannel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // Implementation of the HETC88 code into Geant4.
27 // Evaporation and De-excitation parts
28 // T. Lampen, Helsinki Institute of Physics, May-2000
29 //
30 // 20120608 M. Kelsey -- Change vars 's','m','m2' to avoid name collisions
31 
32 #include "G4BEChargedChannel.hh"
33 #include "G4SystemOfUnits.hh"
34 
36 {
37  verboseLevel = 0;
38 }
39 
40 
42 {
43 }
44 
45 
47 {
48  G4int residualZ = nucleusZ - particleZ;
49  G4int residualA = nucleusA - particleA;
50 
51 // Check if nucleus is too small, if this evaporation channel
52 // leads to an impossible residual nucleus or if there is no enough
53 // energy.
54  if ( nucleusA < 2.0 * particleA ||
55  nucleusZ < 2.0 * particleZ ||
56  residualA <= residualZ ||
58  {
59  if ( verboseLevel >= 6 )
60  G4cout << "G4BEChargedChannel : calculateProbability for " << getName() << " = 0 " << G4endl;
62  return;
63  }
64 
65  // In HETC88 s-s0 was used in std::exp( s ), in which s0 was either 50 or
66  // max(s_i), where i goes over all channels.
67 
68  G4double levelParam = getLevelDensityParameter();
69  G4double slevel = 2 * std::sqrt( levelParam * ( excitationEnergy - getThresh() - correction ) );
70  G4double constant = A / 2 * ( 2 * spin + 1 ) * ( 1 + coulombFactor() );
71  G4double eye1 = ( slevel*slevel - 3 * slevel + 3 ) / ( 4 * levelParam*levelParam ) * std::exp( slevel );
72 
73  emissionProbability = constant * std::pow( G4double(residualA), 0.6666666 ) * eye1;
74 
75  if ( verboseLevel >= 6 )
76  G4cout << "G4BEChargedChannel : calculateProbability for " << getName() << G4endl
77  << " res A = " << residualA << G4endl
78  << " res Z = " << residualZ << G4endl
79  << " c*(c_i+1) = "<< constant << G4endl
80  << " qmfactor = "<< qmFactor() << G4endl
81  << " coulombfactor = "<< coulombFactor() << G4endl
82  << " E = " << excitationEnergy << G4endl
83  << " correction = " << correction << G4endl
84  << " eye1 = " << eye1 << G4endl
85  << " levelParam = " << levelParam << G4endl
86  << " thresh = " << getThresh() << G4endl
87  << " s = " << s << G4endl
88  << " probability = " << emissionProbability << G4endl;
89 
90  return;
91 }
92 
93 
95 {
96  G4double levelParam;
97  levelParam = getLevelDensityParameter();
98 
99  const G4double xMax = excitationEnergy - getThresh() - correction; // maximum number
100  const G4double xProb = ( - 1 + std::sqrt ( 1 + 4 * levelParam * xMax ) ) / ( 2 * levelParam ); // most probable value
101  const G4double maxProb = xProb * std::exp ( 2 * std::sqrt ( levelParam * ( xMax - xProb ) ) ); // maximum value of P(x)
102 
103  // Sample x according to density function P(x) with rejection method
104  G4double r1;
105  G4double r2;
106  G4int koe=0;
107  do
108  {
109  r1 = G4UniformRand() * xMax;
110  r2 = G4UniformRand() * maxProb;
111  koe++;
112  }
113  while ( r1 * std::exp ( 2 * std::sqrt ( levelParam * ( xMax - r1 ) ) ) < r2 );
114 
115 // G4cout << "Q ch " << koe << G4endl;
116  G4double kineticEnergy = r1 + getCoulomb(); // add coulomb potential;
117 
118  if ( verboseLevel >= 10 )
119  G4cout << " G4BENeutronChannel : sampleKineticEnergy() " << G4endl
120  << " kinetic n e = " << kineticEnergy << G4endl
121  << " levelParam = " << levelParam << G4endl
122  << " thresh= " << getThresh() << G4endl;
123 
124  return kineticEnergy;
125 }
126 
127 
129 {
130  // Coefficient c_p:s for empirical cross section formula are
131  // defined with the proton constant. See Dostrovsky, Phys. Rev.,
132  // vol. 116, 1959.
133  G4double t[7] = { 0.08 , 0 , -0.06 , -0.1 , -0.1 , -0.1 , -0.1 };
135 
136  if ( Z >= 70.0 ) return t[6];
137  if ( Z <= 10.0 ) return t[0];
138 
139  // Linear interpolation
140  G4int n = G4int( 0.1 * Z + 1.0 );
141  G4float x = ( 10 * n - Z ) * 0.1;
142  G4double ret_val = x * t[n - 2] + ( 1.0 - x ) * t[n-1];
143 
144  return ret_val;
145 }
146 
147 
149 {
150  // Coefficient k_p for empirical cross section formula are defined
151  // with the proton constant. See Dostrovsky, Phys. Rev., vol. 116,
152  // 1959
153  G4double t[7] = { 0.36, 0.51, 0.60, 0.66, 0.68, 0.69, 0.69 };
155 
156  if ( Z >= 70.0 ) return t[6];
157  if ( Z <= 10.0 ) return t[0];
158 
159  // Linear interpolation
160  G4int n = G4int( 0.1 * Z + 1.0 );
161  G4float x = ( 10 * n - Z ) * 0.1;
162  return x * t[n - 2] + ( 1.0 - x ) * t[n-1];
163 }
164 
165 
167 {
168 // Coefficient k_alpha for empirical cross section formula presented
169 // in Dostrovsky, Phys. Rev., vol. 116, 1959
170 
171  G4double t[7] = { 0.77, 0.81, 0.85, 0.89, 0.93, 0.97, 1.00 };
173 
174  if ( Z >= 70.0 ) return t[6];
175  if ( Z <= 10.0 ) return t[0];
176 
177  // Linear interpolation
178  G4int n = G4int( 0.1 * Z + 1.0 );
179  G4float x = ( 10 * n - Z ) * 0.1;
180  return x * t[n - 2] + ( 1.0 - x ) * t[n-1];
181 }