Geant4
9.6.p02
Main Page
Related Pages
Modules
Namespaces
Classes
Files
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
geant4_9_6_p02
source
global
HEPNumerics
include
G4AnalyticalPolSolver.hh
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
// $Id$
28
//
29
// Class description:
30
//
31
// G4AnalyticalPolSolver allows the user to solve analytically a polynomial
32
// equation up to the 4th order. This is used by CSG solid tracking functions
33
// like G4Torus.
34
//
35
// The algorithm has been adapted from the CACM Algorithm 326:
36
//
37
// Roots of low order polynomials
38
// Author: Terence R.F.Nonweiler
39
// CACM (Apr 1968) p269
40
// Translated into C and programmed by M.Dow
41
// ANUSF, Australian National University, Canberra, Australia
42
// m.dow@anu.edu.au
43
//
44
// Suite of procedures for finding the (complex) roots of the quadratic,
45
// cubic or quartic polynomials by explicit algebraic methods.
46
// Each Returns:
47
//
48
// x=r[1][k] + i r[2][k] k=1,...,n, where n={2,3,4}
49
//
50
// as roots of:
51
// sum_{k=0:n} p[k] x^(n-k) = 0
52
// Assumes p[0] != 0. (< or > 0) (overflows otherwise)
53
54
// --------------------------- HISTORY --------------------------------------
55
//
56
// 13.05.05 V.Grichine ( Vladimir.Grichine@cern.ch )
57
// First implementation in C++
58
59
#ifndef G4AN_POL_SOLVER_HH
60
#define G4AN_POL_SOLVER_HH
61
62
#include "
G4Types.hh
"
63
64
class
G4AnalyticalPolSolver
65
{
66
public
:
// with description
67
68
G4AnalyticalPolSolver
();
69
~G4AnalyticalPolSolver
();
70
71
G4int
QuadRoots
(
G4double
p
[5],
G4double
r
[3][5]);
72
G4int
CubicRoots
(
G4double
p[5],
G4double
r[3][5]);
73
G4int
BiquadRoots
(
G4double
p[5],
G4double
r[3][5]);
74
G4int
QuarticRoots
(
G4double
p[5],
G4double
r[3][5]);
75
};
76
77
#endif
Generated on Sat May 25 2013 14:33:17 for Geant4 by
1.8.4