Geant4  10.03.p03
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
nf_Legendre_GaussianQuadrature.cc File Reference
#include "nf_Legendre.h"
Include dependency graph for nf_Legendre_GaussianQuadrature.cc:

Go to the source code of this file.

Classes

struct  nf_Legendre_GaussianQuadrature_degree
 

Macros

#define n_3   3
 
#define n_4   4
 
#define n_5   5
 
#define n_10   10
 
#define n_20   20
 
#define n_40   40
 
#define nSets   6
 

Functions

nfu_status nf_Legendre_GaussianQuadrature (int degree, double x1, double x2, nf_Legendre_GaussianQuadrature_callback func, void *argList, double *integral)
 

Variables

static double sqrt_inv3 = 0.57735026918962576451
 
static double weights_3 [(n_3+1)/2] = { 8. / 9., 5. / 9. }
 
static double xis_3 [(n_3+1)/2] = { 0., 0.77459666924148337704 }
 
static double weights_4 [(n_4+1)/2] = { 0.65214515486254614263, 0.34785484513745385737 }
 
static double xis_4 [(n_4+1)/2] = { 0.33998104358485626480, 0.86113631159405257522 }
 
static double weights_5 [(n_5+1)/2] = { 0.568888888888889, 0.478628670499366, 0.236926885056189 }
 
static double xis_5 [(n_5+1)/2] = { 0.0, 0.538469310105683, 0.906179845938664 }
 
static double weights_10 [(n_10+1)/2] = { 0.295524224714752870, 0.269266719309996355, 0.219086362515982044, 0.149451349150580593, 0.066671344308688138 }
 
static double xis_10 [(n_10+1)/2] = { 0.148874338981631211, 0.433395394129247191, 0.679409568299024406, 0.865063366688984511, 0.973906528517171720 }
 
static double weights_20 [(n_20+1)/2]
 
static double xis_20 [(n_20+1)/2]
 
static double weights_40 [(n_40+1)/2]
 
static double xis_40 [(n_40+1)/2]
 
static struct
nf_Legendre_GaussianQuadrature_degree 
GaussianQuadrature_degrees [nSets]
 

Macro Definition Documentation

#define n_10   10

Definition at line 33 of file nf_Legendre_GaussianQuadrature.cc.

#define n_20   20

Definition at line 37 of file nf_Legendre_GaussianQuadrature.cc.

#define n_3   3

Definition at line 21 of file nf_Legendre_GaussianQuadrature.cc.

#define n_4   4

Definition at line 25 of file nf_Legendre_GaussianQuadrature.cc.

#define n_40   40

Definition at line 45 of file nf_Legendre_GaussianQuadrature.cc.

#define n_5   5

Definition at line 29 of file nf_Legendre_GaussianQuadrature.cc.

#define nSets   6

Definition at line 57 of file nf_Legendre_GaussianQuadrature.cc.

Function Documentation

nfu_status nf_Legendre_GaussianQuadrature ( int  degree,
double  x1,
double  x2,
nf_Legendre_GaussianQuadrature_callback  func,
void argList,
double *  integral 
)

Definition at line 63 of file nf_Legendre_GaussianQuadrature.cc.

63  {
64 
65  int i, n;
66  double x, mu, sum, *weights, *xis;
67  nfu_status status = nfu_Okay;
68 
69  *integral = 0;
70  if( degree < 2 ) {
71  status = func( 0.5 * ( x1 + x2 ), integral, argList );
72  *integral *= 2.; }
73  else if( degree < 4 ) {
74  x = 0.5 * ( -sqrt_inv3 * ( x2 - x1 ) + x1 + x2 );
75  if( ( status = func( x, integral, argList ) ) == nfu_Okay ) {
76  x = 0.5 * ( sqrt_inv3 * ( x2 - x1 ) + x1 + x2 );
77  status = func( x, &sum, argList );
78  *integral += sum;
79  } }
80  else {
81  for( i = 0; i < nSets - 1; i++ ) {
82  if( GaussianQuadrature_degrees[i].n > ( degree + 1 ) / 2 ) break;
83  }
84  n = ( GaussianQuadrature_degrees[i].n + 1 ) / 2;
87  for( i = 0; i < n; i++ ) {
88  mu = xis[i];
89  x = 0.5 * ( x1 * ( 1 - mu ) + x2 * ( mu + 1 ) );
90  if( ( status = func( x, &sum, argList ) ) != nfu_Okay ) break;
91  *integral += sum * weights[i];
92  if( mu == 0 ) continue;
93  x = x1 + x2 - x;
94  if( ( status = func( x, &sum, argList ) ) != nfu_Okay ) break;
95  *integral += sum * weights[i];
96  }
97  }
98  *integral *= 0.5 * ( x2 - x1 );
99  return( status );
100 }
tuple x
Definition: test.py:50
static double sqrt_inv3
static constexpr double degree
Definition: G4SIunits.hh:144
enum nfu_status_e nfu_status
const G4int n
static struct nf_Legendre_GaussianQuadrature_degree GaussianQuadrature_degrees[nSets]

Here is the caller graph for this function:

Variable Documentation

struct nf_Legendre_GaussianQuadrature_degree GaussianQuadrature_degrees[nSets]
static
Initial value:
= { { n_3, weights_3, xis_3 }, { n_4, weights_4, xis_4 },
static double weights_3[(n_3+1)/2]
static double weights_5[(n_5+1)/2]
static double weights_4[(n_4+1)/2]
static double xis_40[(n_40+1)/2]
static double xis_4[(n_4+1)/2]
static double xis_20[(n_20+1)/2]
static double xis_10[(n_10+1)/2]
static double weights_40[(n_40+1)/2]
static double weights_10[(n_10+1)/2]
static double xis_3[(n_3+1)/2]
static double weights_20[(n_20+1)/2]
static double xis_5[(n_5+1)/2]

Definition at line 58 of file nf_Legendre_GaussianQuadrature.cc.

double sqrt_inv3 = 0.57735026918962576451
static

Definition at line 19 of file nf_Legendre_GaussianQuadrature.cc.

double weights_10[(n_10+1)/2] = { 0.295524224714752870, 0.269266719309996355, 0.219086362515982044, 0.149451349150580593, 0.066671344308688138 }
static

Definition at line 34 of file nf_Legendre_GaussianQuadrature.cc.

double weights_20[(n_20+1)/2]
static
Initial value:
= {
0.152753387130725850698, 0.149172986472603746788, 0.142096109318382051329, 0.131688638449176626898, 0.118194531961518417312,
0.101930119817240435037, 0.083276741576704748725, 0.062672048334109063570, 0.040601429800386941331, 0.017614007139152118312 }

Definition at line 38 of file nf_Legendre_GaussianQuadrature.cc.

double weights_3[(n_3+1)/2] = { 8. / 9., 5. / 9. }
static

Definition at line 22 of file nf_Legendre_GaussianQuadrature.cc.

double weights_4[(n_4+1)/2] = { 0.65214515486254614263, 0.34785484513745385737 }
static

Definition at line 26 of file nf_Legendre_GaussianQuadrature.cc.

double weights_40[(n_40+1)/2]
static
Initial value:
= {
0.077505947978424811264, 0.077039818164247965588, 0.076110361900626242372, 0.074723169057968264200, 0.072886582395804059061,
0.070611647391286779696, 0.067912045815233903826, 0.064804013456601038075, 0.061306242492928939167, 0.057439769099391551367,
0.053227846983936824355, 0.048695807635072232061, 0.043870908185673271992, 0.038782167974472017640, 0.033460195282547847393,
0.027937006980023401099, 0.022245849194166957262, 0.016421058381907888713, 0.010498284531152813615, 0.004521277098533191258 }

Definition at line 46 of file nf_Legendre_GaussianQuadrature.cc.

double weights_5[(n_5+1)/2] = { 0.568888888888889, 0.478628670499366, 0.236926885056189 }
static

Definition at line 30 of file nf_Legendre_GaussianQuadrature.cc.

double xis_10[(n_10+1)/2] = { 0.148874338981631211, 0.433395394129247191, 0.679409568299024406, 0.865063366688984511, 0.973906528517171720 }
static

Definition at line 35 of file nf_Legendre_GaussianQuadrature.cc.

double xis_20[(n_20+1)/2]
static
Initial value:
= {
0.076526521133497333755, 0.227785851141645078080, 0.373706088715419560673, 0.510867001950827098004, 0.636053680726515025453,
0.746331906460150792614, 0.839116971822218823395, 0.912234428251325905868, 0.963971927277913791268, 0.993128599185094924786 }

Definition at line 41 of file nf_Legendre_GaussianQuadrature.cc.

double xis_3[(n_3+1)/2] = { 0., 0.77459666924148337704 }
static

Definition at line 23 of file nf_Legendre_GaussianQuadrature.cc.

double xis_4[(n_4+1)/2] = { 0.33998104358485626480, 0.86113631159405257522 }
static

Definition at line 27 of file nf_Legendre_GaussianQuadrature.cc.

double xis_40[(n_40+1)/2]
static
Initial value:
= {
0.038772417506050821933, 0.116084070675255208483, 0.192697580701371099716, 0.268152185007253681141, 0.341994090825758473007,
0.413779204371605001525, 0.483075801686178712909, 0.549467125095128202076, 0.612553889667980237953, 0.671956684614179548379,
0.727318255189927103281, 0.778305651426519387695, 0.824612230833311663196, 0.865959503212259503821, 0.902098806968874296728,
0.932812808278676533361, 0.957916819213791655805, 0.977259949983774262663, 0.990726238699457006453, 0.998237709710559200350 }

Definition at line 51 of file nf_Legendre_GaussianQuadrature.cc.

double xis_5[(n_5+1)/2] = { 0.0, 0.538469310105683, 0.906179845938664 }
static

Definition at line 31 of file nf_Legendre_GaussianQuadrature.cc.