37     double estimate = 0., y1, integral_, coarse;
 
   49         if( ( status = integrandFunction( x1 + ( x2 - x1 ) * 
initialPoints[i1], &y1, argList ) ) != 
nfu_Okay ) 
return( status );
 
   52     if( ( status = quadratureFunction( integrandFunction, argList, x1, x2, &integral_ ) ) != 
nfu_Okay ) 
return( status );
 
   53     estimate = 0.5 * ( estimate * ( x2 - x1 ) / numberOfInitialPoints + integral_ );
 
   54     if( estimate == 0. ) estimate = x2 - x1;
 
   57     if( ( status = quadratureFunction( integrandFunction, argList, x1, x2, &coarse ) ) != 
nfu_Okay ) 
return( status );
 
   60     for( i1 = 0; i1 < 2; i1++ ) {       
 
   61         if( integral_ == 0. ) 
break;
 
   62         y1 = integral_ / estimate;
 
   63         if( ( y1 > 0.1 ) && ( y1 < 10. ) ) 
break;
 
   67         *evaluations += adaptiveQuadrature_info.
evaluations;
 
   72     *evaluations += adaptiveQuadrature_info.
evaluations;
 
   73     if( adaptiveQuadrature_info.
status == 
nfu_Okay ) *integral = integral_;
 
   74     return( adaptiveQuadrature_info.
status );
 
static double nf_GnG_adaptiveQuadrature2(nf_GnG_adaptiveQuadrature_info *adaptiveQuadrature_info, double currentIntrgral, double x1, double x2, int depth)
 
static int numberOfInitialPoints
 
#define nf_GnG_adaptiveQuadrature_MaxMaxDepth
 
static double initialPoints[]
 
enum nfu_status_e nfu_status