Geant4  10.03.p03
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4Tubs Class Reference

#include <G4Tubs.hh>

Inheritance diagram for G4Tubs:
Collaboration diagram for G4Tubs:

Public Member Functions

 G4Tubs (const G4String &pName, G4double pRMin, G4double pRMax, G4double pDz, G4double pSPhi, G4double pDPhi)
 
virtual ~G4Tubs ()
 
G4double GetInnerRadius () const
 
G4double GetOuterRadius () const
 
G4double GetZHalfLength () const
 
G4double GetStartPhiAngle () const
 
G4double GetDeltaPhiAngle () const
 
G4double GetSinStartPhi () const
 
G4double GetCosStartPhi () const
 
G4double GetSinEndPhi () const
 
G4double GetCosEndPhi () const
 
void SetInnerRadius (G4double newRMin)
 
void SetOuterRadius (G4double newRMax)
 
void SetZHalfLength (G4double newDz)
 
void SetStartPhiAngle (G4double newSPhi, G4bool trig=true)
 
void SetDeltaPhiAngle (G4double newDPhi)
 
G4double GetCubicVolume ()
 
G4double GetSurfaceArea ()
 
void ComputeDimensions (G4VPVParameterisation *p, const G4int n, const G4VPhysicalVolume *pRep)
 
void Extent (G4ThreeVector &pMin, G4ThreeVector &pMax) const
 
G4bool CalculateExtent (const EAxis pAxis, const G4VoxelLimits &pVoxelLimit, const G4AffineTransform &pTransform, G4double &pmin, G4double &pmax) const
 
EInside Inside (const G4ThreeVector &p) const
 
G4ThreeVector SurfaceNormal (const G4ThreeVector &p) const
 
G4double DistanceToIn (const G4ThreeVector &p, const G4ThreeVector &v) const
 
G4double DistanceToIn (const G4ThreeVector &p) const
 
G4double DistanceToOut (const G4ThreeVector &p, const G4ThreeVector &v, const G4bool calcNorm=G4bool(false), G4bool *validNorm=0, G4ThreeVector *n=0) const
 
G4double DistanceToOut (const G4ThreeVector &p) const
 
G4GeometryType GetEntityType () const
 
G4ThreeVector GetPointOnSurface () const
 
G4VSolidClone () const
 
std::ostream & StreamInfo (std::ostream &os) const
 
void DescribeYourselfTo (G4VGraphicsScene &scene) const
 
G4PolyhedronCreatePolyhedron () const
 
 G4Tubs (__void__ &)
 
 G4Tubs (const G4Tubs &rhs)
 
G4Tubsoperator= (const G4Tubs &rhs)
 
G4double GetRMin () const
 
G4double GetRMax () const
 
G4double GetDz () const
 
G4double GetSPhi () const
 
G4double GetDPhi () const
 
- Public Member Functions inherited from G4CSGSolid
 G4CSGSolid (const G4String &pName)
 
virtual ~G4CSGSolid ()
 
virtual G4PolyhedronGetPolyhedron () const
 
 G4CSGSolid (__void__ &)
 
 G4CSGSolid (const G4CSGSolid &rhs)
 
G4CSGSolidoperator= (const G4CSGSolid &rhs)
 
- Public Member Functions inherited from G4VSolid
 G4VSolid (const G4String &name)
 
virtual ~G4VSolid ()
 
G4bool operator== (const G4VSolid &s) const
 
G4String GetName () const
 
void SetName (const G4String &name)
 
G4double GetTolerance () const
 
void DumpInfo () const
 
virtual G4VisExtent GetExtent () const
 
virtual const G4VSolidGetConstituentSolid (G4int no) const
 
virtual G4VSolidGetConstituentSolid (G4int no)
 
virtual const G4DisplacedSolidGetDisplacedSolidPtr () const
 
virtual G4DisplacedSolidGetDisplacedSolidPtr ()
 
 G4VSolid (__void__ &)
 
 G4VSolid (const G4VSolid &rhs)
 
G4VSolidoperator= (const G4VSolid &rhs)
 
G4double EstimateCubicVolume (G4int nStat, G4double epsilon) const
 
G4double EstimateSurfaceArea (G4int nStat, G4double ell) const
 

Protected Types

enum  ESide {
  kNull, kRMin, kRMax, kSPhi,
  kEPhi, kPZ, kMZ
}
 
enum  ENorm {
  kNRMin, kNRMax, kNSPhi, kNEPhi,
  kNZ
}
 

Protected Member Functions

void Initialize ()
 
void CheckSPhiAngle (G4double sPhi)
 
void CheckDPhiAngle (G4double dPhi)
 
void CheckPhiAngles (G4double sPhi, G4double dPhi)
 
void InitializeTrigonometry ()
 
virtual G4ThreeVector ApproxSurfaceNormal (const G4ThreeVector &p) const
 
- Protected Member Functions inherited from G4CSGSolid
G4double GetRadiusInRing (G4double rmin, G4double rmax) const
 
- Protected Member Functions inherited from G4VSolid
void CalculateClippedPolygonExtent (G4ThreeVectorList &pPolygon, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis, G4double &pMin, G4double &pMax) const
 
void ClipCrossSection (G4ThreeVectorList *pVertices, const G4int pSectionIndex, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis, G4double &pMin, G4double &pMax) const
 
void ClipBetweenSections (G4ThreeVectorList *pVertices, const G4int pSectionIndex, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis, G4double &pMin, G4double &pMax) const
 
void ClipPolygon (G4ThreeVectorList &pPolygon, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis) const
 

Protected Attributes

G4double kRadTolerance
 
G4double kAngTolerance
 
G4double fRMin
 
G4double fRMax
 
G4double fDz
 
G4double fSPhi
 
G4double fDPhi
 
G4double sinCPhi
 
G4double cosCPhi
 
G4double cosHDPhiOT
 
G4double cosHDPhiIT
 
G4double sinSPhi
 
G4double cosSPhi
 
G4double sinEPhi
 
G4double cosEPhi
 
G4bool fPhiFullTube
 
G4double halfCarTolerance
 
G4double halfRadTolerance
 
G4double halfAngTolerance
 
- Protected Attributes inherited from G4CSGSolid
G4double fCubicVolume
 
G4double fSurfaceArea
 
G4bool fRebuildPolyhedron
 
G4PolyhedronfpPolyhedron
 
- Protected Attributes inherited from G4VSolid
G4double kCarTolerance
 

Detailed Description

Definition at line 85 of file G4Tubs.hh.

Member Enumeration Documentation

enum G4Tubs::ENorm
protected
Enumerator
kNRMin 
kNRMax 
kNSPhi 
kNEPhi 
kNZ 

Definition at line 211 of file G4Tubs.hh.

enum G4Tubs::ESide
protected
Enumerator
kNull 
kRMin 
kRMax 
kSPhi 
kEPhi 
kPZ 
kMZ 

Definition at line 207 of file G4Tubs.hh.

Constructor & Destructor Documentation

G4Tubs::G4Tubs ( const G4String pName,
G4double  pRMin,
G4double  pRMax,
G4double  pDz,
G4double  pSPhi,
G4double  pDPhi 
)

Definition at line 89 of file G4Tubs.cc.

93  : G4CSGSolid(pName), fRMin(pRMin), fRMax(pRMax), fDz(pDz), fSPhi(0), fDPhi(0)
94 {
95 
98 
102 
103  if (pDz<=0) // Check z-len
104  {
105  std::ostringstream message;
106  message << "Negative Z half-length (" << pDz << ") in solid: " << GetName();
107  G4Exception("G4Tubs::G4Tubs()", "GeomSolids0002", FatalException, message);
108  }
109  if ( (pRMin >= pRMax) || (pRMin < 0) ) // Check radii
110  {
111  std::ostringstream message;
112  message << "Invalid values for radii in solid: " << GetName()
113  << G4endl
114  << " pRMin = " << pRMin << ", pRMax = " << pRMax;
115  G4Exception("G4Tubs::G4Tubs()", "GeomSolids0002", FatalException, message);
116  }
117 
118  // Check angles
119  //
120  CheckPhiAngles(pSPhi, pDPhi);
121 }
G4String GetName() const
G4double fDPhi
Definition: G4Tubs.hh:217
G4double halfCarTolerance
Definition: G4Tubs.hh:230
G4double fRMin
Definition: G4Tubs.hh:217
G4double GetRadialTolerance() const
G4double fSPhi
Definition: G4Tubs.hh:217
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
G4double halfAngTolerance
Definition: G4Tubs.hh:230
G4CSGSolid(const G4String &pName)
Definition: G4CSGSolid.cc:49
G4double halfRadTolerance
Definition: G4Tubs.hh:230
G4double fRMax
Definition: G4Tubs.hh:217
#define G4endl
Definition: G4ios.hh:61
G4double kCarTolerance
Definition: G4VSolid.hh:307
G4double kRadTolerance
Definition: G4Tubs.hh:213
G4double fDz
Definition: G4Tubs.hh:217
void CheckPhiAngles(G4double sPhi, G4double dPhi)
G4double GetAngularTolerance() const
static G4GeometryTolerance * GetInstance()
G4double kAngTolerance
Definition: G4Tubs.hh:213

Here is the call graph for this function:

Here is the caller graph for this function:

G4Tubs::~G4Tubs ( )
virtual

Definition at line 142 of file G4Tubs.cc.

143 {
144 }
G4Tubs::G4Tubs ( __void__ &  a)

Definition at line 128 of file G4Tubs.cc.

130  fRMin(0.), fRMax(0.), fDz(0.), fSPhi(0.), fDPhi(0.),
131  sinCPhi(0.), cosCPhi(0.), cosHDPhiOT(0.), cosHDPhiIT(0.),
132  sinSPhi(0.), cosSPhi(0.), sinEPhi(0.), cosEPhi(0.),
134  halfAngTolerance(0.)
135 {
136 }
G4bool fPhiFullTube
Definition: G4Tubs.hh:226
G4double fDPhi
Definition: G4Tubs.hh:217
G4double halfCarTolerance
Definition: G4Tubs.hh:230
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
G4double cosEPhi
Definition: G4Tubs.hh:221
G4double cosHDPhiOT
Definition: G4Tubs.hh:221
G4double sinSPhi
Definition: G4Tubs.hh:221
G4double fRMin
Definition: G4Tubs.hh:217
G4double cosCPhi
Definition: G4Tubs.hh:221
G4double fSPhi
Definition: G4Tubs.hh:217
G4double sinEPhi
Definition: G4Tubs.hh:221
G4double halfAngTolerance
Definition: G4Tubs.hh:230
G4CSGSolid(const G4String &pName)
Definition: G4CSGSolid.cc:49
G4double halfRadTolerance
Definition: G4Tubs.hh:230
G4double fRMax
Definition: G4Tubs.hh:217
G4double kRadTolerance
Definition: G4Tubs.hh:213
G4double fDz
Definition: G4Tubs.hh:217
G4double cosSPhi
Definition: G4Tubs.hh:221
G4double cosHDPhiIT
Definition: G4Tubs.hh:221
G4double sinCPhi
Definition: G4Tubs.hh:221
G4double kAngTolerance
Definition: G4Tubs.hh:213
G4Tubs::G4Tubs ( const G4Tubs rhs)

Definition at line 150 of file G4Tubs.cc.

151  : G4CSGSolid(rhs),
153  fRMin(rhs.fRMin), fRMax(rhs.fRMax), fDz(rhs.fDz),
154  fSPhi(rhs.fSPhi), fDPhi(rhs.fDPhi),
155  sinCPhi(rhs.sinCPhi), cosCPhi(rhs.cosCPhi),
157  sinSPhi(rhs.sinSPhi), cosSPhi(rhs.cosSPhi),
162 {
163 }
G4bool fPhiFullTube
Definition: G4Tubs.hh:226
G4double fDPhi
Definition: G4Tubs.hh:217
G4double halfCarTolerance
Definition: G4Tubs.hh:230
G4double cosEPhi
Definition: G4Tubs.hh:221
G4double cosHDPhiOT
Definition: G4Tubs.hh:221
G4double sinSPhi
Definition: G4Tubs.hh:221
G4double fRMin
Definition: G4Tubs.hh:217
G4double cosCPhi
Definition: G4Tubs.hh:221
G4double fSPhi
Definition: G4Tubs.hh:217
G4double sinEPhi
Definition: G4Tubs.hh:221
G4double halfAngTolerance
Definition: G4Tubs.hh:230
G4CSGSolid(const G4String &pName)
Definition: G4CSGSolid.cc:49
G4double halfRadTolerance
Definition: G4Tubs.hh:230
G4double fRMax
Definition: G4Tubs.hh:217
G4double kRadTolerance
Definition: G4Tubs.hh:213
G4double fDz
Definition: G4Tubs.hh:217
G4double cosSPhi
Definition: G4Tubs.hh:221
G4double cosHDPhiIT
Definition: G4Tubs.hh:221
G4double sinCPhi
Definition: G4Tubs.hh:221
G4double kAngTolerance
Definition: G4Tubs.hh:213

Member Function Documentation

G4ThreeVector G4Tubs::ApproxSurfaceNormal ( const G4ThreeVector p) const
protectedvirtual

Definition at line 622 of file G4Tubs.cc.

623 {
624  ENorm side ;
625  G4ThreeVector norm ;
626  G4double rho, phi ;
627  G4double distZ, distRMin, distRMax, distSPhi, distEPhi, distMin ;
628 
629  rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ;
630 
631  distRMin = std::fabs(rho - fRMin) ;
632  distRMax = std::fabs(rho - fRMax) ;
633  distZ = std::fabs(std::fabs(p.z()) - fDz) ;
634 
635  if (distRMin < distRMax) // First minimum
636  {
637  if ( distZ < distRMin )
638  {
639  distMin = distZ ;
640  side = kNZ ;
641  }
642  else
643  {
644  distMin = distRMin ;
645  side = kNRMin ;
646  }
647  }
648  else
649  {
650  if ( distZ < distRMax )
651  {
652  distMin = distZ ;
653  side = kNZ ;
654  }
655  else
656  {
657  distMin = distRMax ;
658  side = kNRMax ;
659  }
660  }
661  if (!fPhiFullTube && rho ) // Protected against (0,0,z)
662  {
663  phi = std::atan2(p.y(),p.x()) ;
664 
665  if ( phi < 0 ) { phi += twopi; }
666 
667  if ( fSPhi < 0 )
668  {
669  distSPhi = std::fabs(phi - (fSPhi + twopi))*rho ;
670  }
671  else
672  {
673  distSPhi = std::fabs(phi - fSPhi)*rho ;
674  }
675  distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ;
676 
677  if (distSPhi < distEPhi) // Find new minimum
678  {
679  if ( distSPhi < distMin )
680  {
681  side = kNSPhi ;
682  }
683  }
684  else
685  {
686  if ( distEPhi < distMin )
687  {
688  side = kNEPhi ;
689  }
690  }
691  }
692  switch ( side )
693  {
694  case kNRMin : // Inner radius
695  {
696  norm = G4ThreeVector(-p.x()/rho, -p.y()/rho, 0) ;
697  break ;
698  }
699  case kNRMax : // Outer radius
700  {
701  norm = G4ThreeVector(p.x()/rho, p.y()/rho, 0) ;
702  break ;
703  }
704  case kNZ : // + or - dz
705  {
706  if ( p.z() > 0 ) { norm = G4ThreeVector(0,0,1) ; }
707  else { norm = G4ThreeVector(0,0,-1); }
708  break ;
709  }
710  case kNSPhi:
711  {
712  norm = G4ThreeVector(std::sin(fSPhi), -std::cos(fSPhi), 0) ;
713  break ;
714  }
715  case kNEPhi:
716  {
717  norm = G4ThreeVector(-std::sin(fSPhi+fDPhi), std::cos(fSPhi+fDPhi), 0) ;
718  break;
719  }
720  default: // Should never reach this case ...
721  {
722  DumpInfo();
723  G4Exception("G4Tubs::ApproxSurfaceNormal()",
724  "GeomSolids1002", JustWarning,
725  "Undefined side for valid surface normal to solid.");
726  break ;
727  }
728  }
729  return norm;
730 }
G4bool fPhiFullTube
Definition: G4Tubs.hh:226
CLHEP::Hep3Vector G4ThreeVector
double x() const
G4double fDPhi
Definition: G4Tubs.hh:217
double z() const
void DumpInfo() const
ENorm
Definition: G4Cons.cc:80
static constexpr double twopi
Definition: G4SIunits.hh:76
G4double fRMin
Definition: G4Tubs.hh:217
G4double fSPhi
Definition: G4Tubs.hh:217
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
double y() const
G4double fRMax
Definition: G4Tubs.hh:217
G4double fDz
Definition: G4Tubs.hh:217
double G4double
Definition: G4Types.hh:76

Here is the call graph for this function:

Here is the caller graph for this function:

G4bool G4Tubs::CalculateExtent ( const EAxis  pAxis,
const G4VoxelLimits pVoxelLimit,
const G4AffineTransform pTransform,
G4double pmin,
G4double pmax 
) const
virtual

Implements G4VSolid.

Definition at line 254 of file G4Tubs.cc.

259 {
260  G4ThreeVector bmin, bmax;
261  G4bool exist;
262 
263  // Get bounding box
264  Extent(bmin,bmax);
265 
266  // Check bounding box
267  G4BoundingEnvelope bbox(bmin,bmax);
268 #ifdef G4BBOX_EXTENT
269  if (true) return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
270 #endif
271  if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax))
272  {
273  return exist = (pMin < pMax) ? true : false;
274  }
275 
276  // Get parameters of the solid
277  G4double rmin = GetInnerRadius();
278  G4double rmax = GetOuterRadius();
279  G4double dz = GetZHalfLength();
280  G4double dphi = GetDeltaPhiAngle();
281 
282  // Find bounding envelope and calculate extent
283  //
284  const G4int NSTEPS = 24; // number of steps for whole circle
285  G4double astep = twopi/NSTEPS; // max angle for one step
286  G4int ksteps = (dphi <= astep) ? 1 : (G4int)((dphi-deg)/astep) + 1;
287  G4double ang = dphi/ksteps;
288 
289  G4double sinHalf = std::sin(0.5*ang);
290  G4double cosHalf = std::cos(0.5*ang);
291  G4double sinStep = 2.*sinHalf*cosHalf;
292  G4double cosStep = 1. - 2.*sinHalf*sinHalf;
293  G4double rext = rmax/cosHalf;
294 
295  // bounding envelope for full cylinder consists of two polygons,
296  // in other cases it is a sequence of quadrilaterals
297  if (rmin == 0 && dphi == twopi)
298  {
299  G4double sinCur = sinHalf;
300  G4double cosCur = cosHalf;
301 
302  G4ThreeVectorList baseA(NSTEPS),baseB(NSTEPS);
303  for (G4int k=0; k<NSTEPS; ++k)
304  {
305  baseA[k].set(rext*cosCur,rext*sinCur,-dz);
306  baseB[k].set(rext*cosCur,rext*sinCur, dz);
307 
308  G4double sinTmp = sinCur;
309  sinCur = sinCur*cosStep + cosCur*sinStep;
310  cosCur = cosCur*cosStep - sinTmp*sinStep;
311  }
312  std::vector<const G4ThreeVectorList *> polygons(2);
313  polygons[0] = &baseA;
314  polygons[1] = &baseB;
315  G4BoundingEnvelope benv(bmin,bmax,polygons);
316  exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
317  }
318  else
319  {
320  G4double sinStart = GetSinStartPhi();
321  G4double cosStart = GetCosStartPhi();
322  G4double sinEnd = GetSinEndPhi();
323  G4double cosEnd = GetCosEndPhi();
324  G4double sinCur = sinStart*cosHalf + cosStart*sinHalf;
325  G4double cosCur = cosStart*cosHalf - sinStart*sinHalf;
326 
327  // set quadrilaterals
328  G4ThreeVectorList pols[NSTEPS+2];
329  for (G4int k=0; k<ksteps+2; ++k) pols[k].resize(4);
330  pols[0][0].set(rmin*cosStart,rmin*sinStart, dz);
331  pols[0][1].set(rmin*cosStart,rmin*sinStart,-dz);
332  pols[0][2].set(rmax*cosStart,rmax*sinStart,-dz);
333  pols[0][3].set(rmax*cosStart,rmax*sinStart, dz);
334  for (G4int k=1; k<ksteps+1; ++k)
335  {
336  pols[k][0].set(rmin*cosCur,rmin*sinCur, dz);
337  pols[k][1].set(rmin*cosCur,rmin*sinCur,-dz);
338  pols[k][2].set(rext*cosCur,rext*sinCur,-dz);
339  pols[k][3].set(rext*cosCur,rext*sinCur, dz);
340 
341  G4double sinTmp = sinCur;
342  sinCur = sinCur*cosStep + cosCur*sinStep;
343  cosCur = cosCur*cosStep - sinTmp*sinStep;
344  }
345  pols[ksteps+1][0].set(rmin*cosEnd,rmin*sinEnd, dz);
346  pols[ksteps+1][1].set(rmin*cosEnd,rmin*sinEnd,-dz);
347  pols[ksteps+1][2].set(rmax*cosEnd,rmax*sinEnd,-dz);
348  pols[ksteps+1][3].set(rmax*cosEnd,rmax*sinEnd, dz);
349 
350  // set envelope and calculate extent
351  std::vector<const G4ThreeVectorList *> polygons;
352  polygons.resize(ksteps+2);
353  for (G4int k=0; k<ksteps+2; ++k) polygons[k] = &pols[k];
354  G4BoundingEnvelope benv(bmin,bmax,polygons);
355  exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
356  }
357  return exist;
358 }
void Extent(G4ThreeVector &pMin, G4ThreeVector &pMax) const
Definition: G4Tubs.cc:212
G4double GetCosEndPhi() const
int G4int
Definition: G4Types.hh:78
static constexpr double twopi
Definition: G4SIunits.hh:76
G4double GetDeltaPhiAngle() const
G4double GetSinEndPhi() const
bool G4bool
Definition: G4Types.hh:79
G4double GetSinStartPhi() const
G4double GetInnerRadius() const
std::vector< G4ThreeVector > G4ThreeVectorList
G4double GetZHalfLength() const
double G4double
Definition: G4Types.hh:76
static constexpr double deg
Definition: G4SIunits.hh:152
tuple astep
Definition: test1.py:13
G4double GetCosStartPhi() const
G4double GetOuterRadius() const

Here is the call graph for this function:

void G4Tubs::CheckDPhiAngle ( G4double  dPhi)
inlineprotected
void G4Tubs::CheckPhiAngles ( G4double  sPhi,
G4double  dPhi 
)
inlineprotected

Here is the caller graph for this function:

void G4Tubs::CheckSPhiAngle ( G4double  sPhi)
inlineprotected
G4VSolid * G4Tubs::Clone ( ) const
virtual

Reimplemented from G4VSolid.

Definition at line 1660 of file G4Tubs.cc.

1661 {
1662  return new G4Tubs(*this);
1663 }
G4Tubs(const G4String &pName, G4double pRMin, G4double pRMax, G4double pDz, G4double pSPhi, G4double pDPhi)
Definition: G4Tubs.cc:89

Here is the call graph for this function:

void G4Tubs::ComputeDimensions ( G4VPVParameterisation p,
const G4int  n,
const G4VPhysicalVolume pRep 
)
virtual

Reimplemented from G4VSolid.

Definition at line 201 of file G4Tubs.cc.

204 {
205  p->ComputeDimensions(*this,n,pRep) ;
206 }
const G4int n
virtual void ComputeDimensions(G4Box &, const G4int, const G4VPhysicalVolume *) const

Here is the call graph for this function:

G4Polyhedron * G4Tubs::CreatePolyhedron ( ) const
virtual

Reimplemented from G4VSolid.

Definition at line 1767 of file G4Tubs.cc.

1768 {
1769  return new G4PolyhedronTubs (fRMin, fRMax, fDz, fSPhi, fDPhi) ;
1770 }
G4double fDPhi
Definition: G4Tubs.hh:217
G4double fRMin
Definition: G4Tubs.hh:217
G4double fSPhi
Definition: G4Tubs.hh:217
G4double fRMax
Definition: G4Tubs.hh:217
G4double fDz
Definition: G4Tubs.hh:217

Here is the caller graph for this function:

void G4Tubs::DescribeYourselfTo ( G4VGraphicsScene scene) const
virtual

Implements G4VSolid.

Definition at line 1762 of file G4Tubs.cc.

1763 {
1764  scene.AddSolid (*this) ;
1765 }
virtual void AddSolid(const G4Box &)=0

Here is the call graph for this function:

G4double G4Tubs::DistanceToIn ( const G4ThreeVector p,
const G4ThreeVector v 
) const
virtual

Implements G4VSolid.

Definition at line 754 of file G4Tubs.cc.

756 {
757  G4double snxt = kInfinity ; // snxt = default return value
758  G4double tolORMin2, tolIRMax2 ; // 'generous' radii squared
759  G4double tolORMax2, tolIRMin2, tolODz, tolIDz ;
760  const G4double dRmax = 100.*fRMax;
761 
762  // Intersection point variables
763  //
764  G4double Dist, sd, xi, yi, zi, rho2, inum, iden, cosPsi, Comp ;
765  G4double t1, t2, t3, b, c, d ; // Quadratic solver variables
766 
767  // Calculate tolerant rmin and rmax
768 
769  if (fRMin > kRadTolerance)
770  {
771  tolORMin2 = (fRMin - halfRadTolerance)*(fRMin - halfRadTolerance) ;
772  tolIRMin2 = (fRMin + halfRadTolerance)*(fRMin + halfRadTolerance) ;
773  }
774  else
775  {
776  tolORMin2 = 0.0 ;
777  tolIRMin2 = 0.0 ;
778  }
779  tolORMax2 = (fRMax + halfRadTolerance)*(fRMax + halfRadTolerance) ;
780  tolIRMax2 = (fRMax - halfRadTolerance)*(fRMax - halfRadTolerance) ;
781 
782  // Intersection with Z surfaces
783 
784  tolIDz = fDz - halfCarTolerance ;
785  tolODz = fDz + halfCarTolerance ;
786 
787  if (std::fabs(p.z()) >= tolIDz)
788  {
789  if ( p.z()*v.z() < 0 ) // at +Z going in -Z or visa versa
790  {
791  sd = (std::fabs(p.z()) - fDz)/std::fabs(v.z()) ; // Z intersect distance
792 
793  if(sd < 0.0) { sd = 0.0; }
794 
795  xi = p.x() + sd*v.x() ; // Intersection coords
796  yi = p.y() + sd*v.y() ;
797  rho2 = xi*xi + yi*yi ;
798 
799  // Check validity of intersection
800 
801  if ((tolIRMin2 <= rho2) && (rho2 <= tolIRMax2))
802  {
803  if (!fPhiFullTube && rho2)
804  {
805  // Psi = angle made with central (average) phi of shape
806  //
807  inum = xi*cosCPhi + yi*sinCPhi ;
808  iden = std::sqrt(rho2) ;
809  cosPsi = inum/iden ;
810  if (cosPsi >= cosHDPhiIT) { return sd ; }
811  }
812  else
813  {
814  return sd ;
815  }
816  }
817  }
818  else
819  {
820  if ( snxt<halfCarTolerance ) { snxt=0; }
821  return snxt ; // On/outside extent, and heading away
822  // -> cannot intersect
823  }
824  }
825 
826  // -> Can not intersect z surfaces
827  //
828  // Intersection with rmax (possible return) and rmin (must also check phi)
829  //
830  // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc.
831  //
832  // Intersects with x^2+y^2=R^2
833  //
834  // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0
835  // t1 t2 t3
836 
837  t1 = 1.0 - v.z()*v.z() ;
838  t2 = p.x()*v.x() + p.y()*v.y() ;
839  t3 = p.x()*p.x() + p.y()*p.y() ;
840 
841  if ( t1 > 0 ) // Check not || to z axis
842  {
843  b = t2/t1 ;
844  c = t3 - fRMax*fRMax ;
845  if ((t3 >= tolORMax2) && (t2<0)) // This also handles the tangent case
846  {
847  // Try outer cylinder intersection
848  // c=(t3-fRMax*fRMax)/t1;
849 
850  c /= t1 ;
851  d = b*b - c ;
852 
853  if (d >= 0) // If real root
854  {
855  sd = c/(-b+std::sqrt(d));
856  if (sd >= 0) // If 'forwards'
857  {
858  if ( sd>dRmax ) // Avoid rounding errors due to precision issues on
859  { // 64 bits systems. Split long distances and recompute
860  G4double fTerm = sd-std::fmod(sd,dRmax);
861  sd = fTerm + DistanceToIn(p+fTerm*v,v);
862  }
863  // Check z intersection
864  //
865  zi = p.z() + sd*v.z() ;
866  if (std::fabs(zi)<=tolODz)
867  {
868  // Z ok. Check phi intersection if reqd
869  //
870  if (fPhiFullTube)
871  {
872  return sd ;
873  }
874  else
875  {
876  xi = p.x() + sd*v.x() ;
877  yi = p.y() + sd*v.y() ;
878  cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMax ;
879  if (cosPsi >= cosHDPhiIT) { return sd ; }
880  }
881  } // end if std::fabs(zi)
882  } // end if (sd>=0)
883  } // end if (d>=0)
884  } // end if (r>=fRMax)
885  else
886  {
887  // Inside outer radius :
888  // check not inside, and heading through tubs (-> 0 to in)
889 
890  if ((t3 > tolIRMin2) && (t2 < 0) && (std::fabs(p.z()) <= tolIDz))
891  {
892  // Inside both radii, delta r -ve, inside z extent
893 
894  if (!fPhiFullTube)
895  {
896  inum = p.x()*cosCPhi + p.y()*sinCPhi ;
897  iden = std::sqrt(t3) ;
898  cosPsi = inum/iden ;
899  if (cosPsi >= cosHDPhiIT)
900  {
901  // In the old version, the small negative tangent for the point
902  // on surface was not taken in account, and returning 0.0 ...
903  // New version: check the tangent for the point on surface and
904  // if no intersection, return kInfinity, if intersection instead
905  // return sd.
906  //
907  c = t3-fRMax*fRMax;
908  if ( c<=0.0 )
909  {
910  return 0.0;
911  }
912  else
913  {
914  c = c/t1 ;
915  d = b*b-c;
916  if ( d>=0.0 )
917  {
918  snxt = c/(-b+std::sqrt(d)); // using safe solution
919  // for quadratic equation
920  if ( snxt < halfCarTolerance ) { snxt=0; }
921  return snxt ;
922  }
923  else
924  {
925  return kInfinity;
926  }
927  }
928  }
929  }
930  else
931  {
932  // In the old version, the small negative tangent for the point
933  // on surface was not taken in account, and returning 0.0 ...
934  // New version: check the tangent for the point on surface and
935  // if no intersection, return kInfinity, if intersection instead
936  // return sd.
937  //
938  c = t3 - fRMax*fRMax;
939  if ( c<=0.0 )
940  {
941  return 0.0;
942  }
943  else
944  {
945  c = c/t1 ;
946  d = b*b-c;
947  if ( d>=0.0 )
948  {
949  snxt= c/(-b+std::sqrt(d)); // using safe solution
950  // for quadratic equation
951  if ( snxt < halfCarTolerance ) { snxt=0; }
952  return snxt ;
953  }
954  else
955  {
956  return kInfinity;
957  }
958  }
959  } // end if (!fPhiFullTube)
960  } // end if (t3>tolIRMin2)
961  } // end if (Inside Outer Radius)
962  if ( fRMin ) // Try inner cylinder intersection
963  {
964  c = (t3 - fRMin*fRMin)/t1 ;
965  d = b*b - c ;
966  if ( d >= 0.0 ) // If real root
967  {
968  // Always want 2nd root - we are outside and know rmax Hit was bad
969  // - If on surface of rmin also need farthest root
970 
971  sd =( b > 0. )? c/(-b - std::sqrt(d)) : (-b + std::sqrt(d));
972  if (sd >= -halfCarTolerance) // check forwards
973  {
974  // Check z intersection
975  //
976  if(sd < 0.0) { sd = 0.0; }
977  if ( sd>dRmax ) // Avoid rounding errors due to precision issues seen
978  { // 64 bits systems. Split long distances and recompute
979  G4double fTerm = sd-std::fmod(sd,dRmax);
980  sd = fTerm + DistanceToIn(p+fTerm*v,v);
981  }
982  zi = p.z() + sd*v.z() ;
983  if (std::fabs(zi) <= tolODz)
984  {
985  // Z ok. Check phi
986  //
987  if ( fPhiFullTube )
988  {
989  return sd ;
990  }
991  else
992  {
993  xi = p.x() + sd*v.x() ;
994  yi = p.y() + sd*v.y() ;
995  cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMin ;
996  if (cosPsi >= cosHDPhiIT)
997  {
998  // Good inner radius isect
999  // - but earlier phi isect still possible
1000 
1001  snxt = sd ;
1002  }
1003  }
1004  } // end if std::fabs(zi)
1005  } // end if (sd>=0)
1006  } // end if (d>=0)
1007  } // end if (fRMin)
1008  }
1009 
1010  // Phi segment intersection
1011  //
1012  // o Tolerant of points inside phi planes by up to kCarTolerance*0.5
1013  //
1014  // o NOTE: Large duplication of code between sphi & ephi checks
1015  // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane
1016  // intersection check <=0 -> >=0
1017  // -> use some form of loop Construct ?
1018  //
1019  if ( !fPhiFullTube )
1020  {
1021  // First phi surface (Starting phi)
1022  //
1023  Comp = v.x()*sinSPhi - v.y()*cosSPhi ;
1024 
1025  if ( Comp < 0 ) // Component in outwards normal dirn
1026  {
1027  Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ;
1028 
1029  if ( Dist < halfCarTolerance )
1030  {
1031  sd = Dist/Comp ;
1032 
1033  if (sd < snxt)
1034  {
1035  if ( sd < 0 ) { sd = 0.0; }
1036  zi = p.z() + sd*v.z() ;
1037  if ( std::fabs(zi) <= tolODz )
1038  {
1039  xi = p.x() + sd*v.x() ;
1040  yi = p.y() + sd*v.y() ;
1041  rho2 = xi*xi + yi*yi ;
1042 
1043  if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) )
1044  || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2)
1045  && ( v.y()*cosSPhi - v.x()*sinSPhi > 0 )
1046  && ( v.x()*cosSPhi + v.y()*sinSPhi >= 0 ) )
1047  || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2)
1048  && (v.y()*cosSPhi - v.x()*sinSPhi > 0)
1049  && (v.x()*cosSPhi + v.y()*sinSPhi < 0) ) )
1050  {
1051  // z and r intersections good
1052  // - check intersecting with correct half-plane
1053  //
1054  if ((yi*cosCPhi-xi*sinCPhi) <= halfCarTolerance) { snxt = sd; }
1055  }
1056  }
1057  }
1058  }
1059  }
1060 
1061  // Second phi surface (Ending phi)
1062 
1063  Comp = -(v.x()*sinEPhi - v.y()*cosEPhi) ;
1064 
1065  if (Comp < 0 ) // Component in outwards normal dirn
1066  {
1067  Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ;
1068 
1069  if ( Dist < halfCarTolerance )
1070  {
1071  sd = Dist/Comp ;
1072 
1073  if (sd < snxt)
1074  {
1075  if ( sd < 0 ) { sd = 0; }
1076  zi = p.z() + sd*v.z() ;
1077  if ( std::fabs(zi) <= tolODz )
1078  {
1079  xi = p.x() + sd*v.x() ;
1080  yi = p.y() + sd*v.y() ;
1081  rho2 = xi*xi + yi*yi ;
1082  if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) )
1083  || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2)
1084  && (v.x()*sinEPhi - v.y()*cosEPhi > 0)
1085  && (v.x()*cosEPhi + v.y()*sinEPhi >= 0) )
1086  || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2)
1087  && (v.x()*sinEPhi - v.y()*cosEPhi > 0)
1088  && (v.x()*cosEPhi + v.y()*sinEPhi < 0) ) )
1089  {
1090  // z and r intersections good
1091  // - check intersecting with correct half-plane
1092  //
1093  if ( (yi*cosCPhi-xi*sinCPhi) >= 0 ) { snxt = sd; }
1094  } //?? >=-halfCarTolerance
1095  }
1096  }
1097  }
1098  } // Comp < 0
1099  } // !fPhiFullTube
1100  if ( snxt<halfCarTolerance ) { snxt=0; }
1101  return snxt ;
1102 }
G4bool fPhiFullTube
Definition: G4Tubs.hh:226
static const G4double kInfinity
Definition: geomdefs.hh:42
double x() const
G4double halfCarTolerance
Definition: G4Tubs.hh:230
G4double cosEPhi
Definition: G4Tubs.hh:221
G4double DistanceToIn(const G4ThreeVector &p, const G4ThreeVector &v) const
Definition: G4Tubs.cc:754
double z() const
tuple b
Definition: test.py:12
G4double sinSPhi
Definition: G4Tubs.hh:221
G4double fRMin
Definition: G4Tubs.hh:217
G4double cosCPhi
Definition: G4Tubs.hh:221
G4double sinEPhi
Definition: G4Tubs.hh:221
G4double halfRadTolerance
Definition: G4Tubs.hh:230
tuple t1
Definition: plottest35.py:33
double y() const
G4double fRMax
Definition: G4Tubs.hh:217
G4double kRadTolerance
Definition: G4Tubs.hh:213
G4double fDz
Definition: G4Tubs.hh:217
G4double cosSPhi
Definition: G4Tubs.hh:221
double G4double
Definition: G4Types.hh:76
tuple c
Definition: test.py:13
G4double cosHDPhiIT
Definition: G4Tubs.hh:221
G4double sinCPhi
Definition: G4Tubs.hh:221

Here is the call graph for this function:

G4double G4Tubs::DistanceToIn ( const G4ThreeVector p) const
virtual

Implements G4VSolid.

Definition at line 1130 of file G4Tubs.cc.

1131 {
1132  G4double safe=0.0, rho, safe1, safe2, safe3 ;
1133  G4double safePhi, cosPsi ;
1134 
1135  rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ;
1136  safe1 = fRMin - rho ;
1137  safe2 = rho - fRMax ;
1138  safe3 = std::fabs(p.z()) - fDz ;
1139 
1140  if ( safe1 > safe2 ) { safe = safe1; }
1141  else { safe = safe2; }
1142  if ( safe3 > safe ) { safe = safe3; }
1143 
1144  if ( (!fPhiFullTube) && (rho) )
1145  {
1146  // Psi=angle from central phi to point
1147  //
1148  cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/rho ;
1149 
1150  if ( cosPsi < std::cos(fDPhi*0.5) )
1151  {
1152  // Point lies outside phi range
1153 
1154  if ( (p.y()*cosCPhi - p.x()*sinCPhi) <= 0 )
1155  {
1156  safePhi = std::fabs(p.x()*sinSPhi - p.y()*cosSPhi) ;
1157  }
1158  else
1159  {
1160  safePhi = std::fabs(p.x()*sinEPhi - p.y()*cosEPhi) ;
1161  }
1162  if ( safePhi > safe ) { safe = safePhi; }
1163  }
1164  }
1165  if ( safe < 0 ) { safe = 0; }
1166  return safe ;
1167 }
G4bool fPhiFullTube
Definition: G4Tubs.hh:226
double x() const
G4double fDPhi
Definition: G4Tubs.hh:217
G4double cosEPhi
Definition: G4Tubs.hh:221
double z() const
G4double sinSPhi
Definition: G4Tubs.hh:221
G4double fRMin
Definition: G4Tubs.hh:217
G4double cosCPhi
Definition: G4Tubs.hh:221
G4double sinEPhi
Definition: G4Tubs.hh:221
double y() const
G4double fRMax
Definition: G4Tubs.hh:217
G4double fDz
Definition: G4Tubs.hh:217
G4double cosSPhi
Definition: G4Tubs.hh:221
double G4double
Definition: G4Types.hh:76
G4double sinCPhi
Definition: G4Tubs.hh:221

Here is the call graph for this function:

G4double G4Tubs::DistanceToOut ( const G4ThreeVector p,
const G4ThreeVector v,
const G4bool  calcNorm = G4bool(false),
G4bool validNorm = 0,
G4ThreeVector n = 0 
) const
virtual

Implements G4VSolid.

Definition at line 1174 of file G4Tubs.cc.

1179 {
1180  ESide side=kNull , sider=kNull, sidephi=kNull ;
1181  G4double snxt, srd=kInfinity, sphi=kInfinity, pdist ;
1182  G4double deltaR, t1, t2, t3, b, c, d2, roMin2 ;
1183 
1184  // Vars for phi intersection:
1185 
1186  G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, vphi, roi2 ;
1187 
1188  // Z plane intersection
1189 
1190  if (v.z() > 0 )
1191  {
1192  pdist = fDz - p.z() ;
1193  if ( pdist > halfCarTolerance )
1194  {
1195  snxt = pdist/v.z() ;
1196  side = kPZ ;
1197  }
1198  else
1199  {
1200  if (calcNorm)
1201  {
1202  *n = G4ThreeVector(0,0,1) ;
1203  *validNorm = true ;
1204  }
1205  return snxt = 0 ;
1206  }
1207  }
1208  else if ( v.z() < 0 )
1209  {
1210  pdist = fDz + p.z() ;
1211 
1212  if ( pdist > halfCarTolerance )
1213  {
1214  snxt = -pdist/v.z() ;
1215  side = kMZ ;
1216  }
1217  else
1218  {
1219  if (calcNorm)
1220  {
1221  *n = G4ThreeVector(0,0,-1) ;
1222  *validNorm = true ;
1223  }
1224  return snxt = 0.0 ;
1225  }
1226  }
1227  else
1228  {
1229  snxt = kInfinity ; // Travel perpendicular to z axis
1230  side = kNull;
1231  }
1232 
1233  // Radial Intersections
1234  //
1235  // Find intersection with cylinders at rmax/rmin
1236  // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc.
1237  //
1238  // Intersects with x^2+y^2=R^2
1239  //
1240  // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0
1241  //
1242  // t1 t2 t3
1243 
1244  t1 = 1.0 - v.z()*v.z() ; // since v normalised
1245  t2 = p.x()*v.x() + p.y()*v.y() ;
1246  t3 = p.x()*p.x() + p.y()*p.y() ;
1247 
1248  if ( snxt > 10*(fDz+fRMax) ) { roi2 = 2*fRMax*fRMax; }
1249  else { roi2 = snxt*snxt*t1 + 2*snxt*t2 + t3; } // radius^2 on +-fDz
1250 
1251  if ( t1 > 0 ) // Check not parallel
1252  {
1253  // Calculate srd, r exit distance
1254 
1255  if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax + kRadTolerance)) )
1256  {
1257  // Delta r not negative => leaving via rmax
1258 
1259  deltaR = t3 - fRMax*fRMax ;
1260 
1261  // NOTE: Should use rho-fRMax<-kRadTolerance*0.5
1262  // - avoid sqrt for efficiency
1263 
1264  if ( deltaR < -kRadTolerance*fRMax )
1265  {
1266  b = t2/t1 ;
1267  c = deltaR/t1 ;
1268  d2 = b*b-c;
1269  if( d2 >= 0 ) { srd = c/( -b - std::sqrt(d2)); }
1270  else { srd = 0.; }
1271  sider = kRMax ;
1272  }
1273  else
1274  {
1275  // On tolerant boundary & heading outwards (or perpendicular to)
1276  // outer radial surface -> leaving immediately
1277 
1278  if ( calcNorm )
1279  {
1280  *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ;
1281  *validNorm = true ;
1282  }
1283  return snxt = 0 ; // Leaving by rmax immediately
1284  }
1285  }
1286  else if ( t2 < 0. ) // i.e. t2 < 0; Possible rmin intersection
1287  {
1288  roMin2 = t3 - t2*t2/t1 ; // min ro2 of the plane of movement
1289 
1290  if ( fRMin && (roMin2 < fRMin*(fRMin - kRadTolerance)) )
1291  {
1292  deltaR = t3 - fRMin*fRMin ;
1293  b = t2/t1 ;
1294  c = deltaR/t1 ;
1295  d2 = b*b - c ;
1296 
1297  if ( d2 >= 0 ) // Leaving via rmin
1298  {
1299  // NOTE: SHould use rho-rmin>kRadTolerance*0.5
1300  // - avoid sqrt for efficiency
1301 
1302  if (deltaR > kRadTolerance*fRMin)
1303  {
1304  srd = c/(-b+std::sqrt(d2));
1305  sider = kRMin ;
1306  }
1307  else
1308  {
1309  if ( calcNorm ) { *validNorm = false; } // Concave side
1310  return snxt = 0.0;
1311  }
1312  }
1313  else // No rmin intersect -> must be rmax intersect
1314  {
1315  deltaR = t3 - fRMax*fRMax ;
1316  c = deltaR/t1 ;
1317  d2 = b*b-c;
1318  if( d2 >=0. )
1319  {
1320  srd = -b + std::sqrt(d2) ;
1321  sider = kRMax ;
1322  }
1323  else // Case: On the border+t2<kRadTolerance
1324  // (v is perpendicular to the surface)
1325  {
1326  if (calcNorm)
1327  {
1328  *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ;
1329  *validNorm = true ;
1330  }
1331  return snxt = 0.0;
1332  }
1333  }
1334  }
1335  else if ( roi2 > fRMax*(fRMax + kRadTolerance) )
1336  // No rmin intersect -> must be rmax intersect
1337  {
1338  deltaR = t3 - fRMax*fRMax ;
1339  b = t2/t1 ;
1340  c = deltaR/t1;
1341  d2 = b*b-c;
1342  if( d2 >= 0 )
1343  {
1344  srd = -b + std::sqrt(d2) ;
1345  sider = kRMax ;
1346  }
1347  else // Case: On the border+t2<kRadTolerance
1348  // (v is perpendicular to the surface)
1349  {
1350  if (calcNorm)
1351  {
1352  *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ;
1353  *validNorm = true ;
1354  }
1355  return snxt = 0.0;
1356  }
1357  }
1358  }
1359 
1360  // Phi Intersection
1361 
1362  if ( !fPhiFullTube )
1363  {
1364  // add angle calculation with correction
1365  // of the difference in domain of atan2 and Sphi
1366  //
1367  vphi = std::atan2(v.y(),v.x()) ;
1368 
1369  if ( vphi < fSPhi - halfAngTolerance ) { vphi += twopi; }
1370  else if ( vphi > fSPhi + fDPhi + halfAngTolerance ) { vphi -= twopi; }
1371 
1372 
1373  if ( p.x() || p.y() ) // Check if on z axis (rho not needed later)
1374  {
1375  // pDist -ve when inside
1376 
1377  pDistS = p.x()*sinSPhi - p.y()*cosSPhi ;
1378  pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ;
1379 
1380  // Comp -ve when in direction of outwards normal
1381 
1382  compS = -sinSPhi*v.x() + cosSPhi*v.y() ;
1383  compE = sinEPhi*v.x() - cosEPhi*v.y() ;
1384 
1385  sidephi = kNull;
1386 
1387  if( ( (fDPhi <= pi) && ( (pDistS <= halfCarTolerance)
1388  && (pDistE <= halfCarTolerance) ) )
1389  || ( (fDPhi > pi) && !((pDistS > halfCarTolerance)
1390  && (pDistE > halfCarTolerance) ) ) )
1391  {
1392  // Inside both phi *full* planes
1393 
1394  if ( compS < 0 )
1395  {
1396  sphi = pDistS/compS ;
1397 
1398  if (sphi >= -halfCarTolerance)
1399  {
1400  xi = p.x() + sphi*v.x() ;
1401  yi = p.y() + sphi*v.y() ;
1402 
1403  // Check intersecting with correct half-plane
1404  // (if not -> no intersect)
1405  //
1406  if((std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance))
1407  {
1408  sidephi = kSPhi;
1409  if (((fSPhi-halfAngTolerance)<=vphi)
1410  &&((fSPhi+fDPhi+halfAngTolerance)>=vphi))
1411  {
1412  sphi = kInfinity;
1413  }
1414  }
1415  else if ( yi*cosCPhi-xi*sinCPhi >=0 )
1416  {
1417  sphi = kInfinity ;
1418  }
1419  else
1420  {
1421  sidephi = kSPhi ;
1422  if ( pDistS > -halfCarTolerance )
1423  {
1424  sphi = 0.0 ; // Leave by sphi immediately
1425  }
1426  }
1427  }
1428  else
1429  {
1430  sphi = kInfinity ;
1431  }
1432  }
1433  else
1434  {
1435  sphi = kInfinity ;
1436  }
1437 
1438  if ( compE < 0 )
1439  {
1440  sphi2 = pDistE/compE ;
1441 
1442  // Only check further if < starting phi intersection
1443  //
1444  if ( (sphi2 > -halfCarTolerance) && (sphi2 < sphi) )
1445  {
1446  xi = p.x() + sphi2*v.x() ;
1447  yi = p.y() + sphi2*v.y() ;
1448 
1449  if((std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance))
1450  {
1451  // Leaving via ending phi
1452  //
1453  if( !((fSPhi-halfAngTolerance <= vphi)
1454  &&(fSPhi+fDPhi+halfAngTolerance >= vphi)) )
1455  {
1456  sidephi = kEPhi ;
1457  if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; }
1458  else { sphi = 0.0 ; }
1459  }
1460  }
1461  else // Check intersecting with correct half-plane
1462 
1463  if ( (yi*cosCPhi-xi*sinCPhi) >= 0)
1464  {
1465  // Leaving via ending phi
1466  //
1467  sidephi = kEPhi ;
1468  if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; }
1469  else { sphi = 0.0 ; }
1470  }
1471  }
1472  }
1473  }
1474  else
1475  {
1476  sphi = kInfinity ;
1477  }
1478  }
1479  else
1480  {
1481  // On z axis + travel not || to z axis -> if phi of vector direction
1482  // within phi of shape, Step limited by rmax, else Step =0
1483 
1484  if ( (fSPhi - halfAngTolerance <= vphi)
1485  && (vphi <= fSPhi + fDPhi + halfAngTolerance ) )
1486  {
1487  sphi = kInfinity ;
1488  }
1489  else
1490  {
1491  sidephi = kSPhi ; // arbitrary
1492  sphi = 0.0 ;
1493  }
1494  }
1495  if (sphi < snxt) // Order intersecttions
1496  {
1497  snxt = sphi ;
1498  side = sidephi ;
1499  }
1500  }
1501  if (srd < snxt) // Order intersections
1502  {
1503  snxt = srd ;
1504  side = sider ;
1505  }
1506  }
1507  if (calcNorm)
1508  {
1509  switch(side)
1510  {
1511  case kRMax:
1512  // Note: returned vector not normalised
1513  // (divide by fRMax for unit vector)
1514  //
1515  xi = p.x() + snxt*v.x() ;
1516  yi = p.y() + snxt*v.y() ;
1517  *n = G4ThreeVector(xi/fRMax,yi/fRMax,0) ;
1518  *validNorm = true ;
1519  break ;
1520 
1521  case kRMin:
1522  *validNorm = false ; // Rmin is inconvex
1523  break ;
1524 
1525  case kSPhi:
1526  if ( fDPhi <= pi )
1527  {
1528  *n = G4ThreeVector(sinSPhi,-cosSPhi,0) ;
1529  *validNorm = true ;
1530  }
1531  else
1532  {
1533  *validNorm = false ;
1534  }
1535  break ;
1536 
1537  case kEPhi:
1538  if (fDPhi <= pi)
1539  {
1540  *n = G4ThreeVector(-sinEPhi,cosEPhi,0) ;
1541  *validNorm = true ;
1542  }
1543  else
1544  {
1545  *validNorm = false ;
1546  }
1547  break ;
1548 
1549  case kPZ:
1550  *n = G4ThreeVector(0,0,1) ;
1551  *validNorm = true ;
1552  break ;
1553 
1554  case kMZ:
1555  *n = G4ThreeVector(0,0,-1) ;
1556  *validNorm = true ;
1557  break ;
1558 
1559  default:
1560  G4cout << G4endl ;
1561  DumpInfo();
1562  std::ostringstream message;
1563  G4int oldprc = message.precision(16);
1564  message << "Undefined side for valid surface normal to solid."
1565  << G4endl
1566  << "Position:" << G4endl << G4endl
1567  << "p.x() = " << p.x()/mm << " mm" << G4endl
1568  << "p.y() = " << p.y()/mm << " mm" << G4endl
1569  << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl
1570  << "Direction:" << G4endl << G4endl
1571  << "v.x() = " << v.x() << G4endl
1572  << "v.y() = " << v.y() << G4endl
1573  << "v.z() = " << v.z() << G4endl << G4endl
1574  << "Proposed distance :" << G4endl << G4endl
1575  << "snxt = " << snxt/mm << " mm" << G4endl ;
1576  message.precision(oldprc) ;
1577  G4Exception("G4Tubs::DistanceToOut(p,v,..)", "GeomSolids1002",
1578  JustWarning, message);
1579  break ;
1580  }
1581  }
1582  if ( snxt<halfCarTolerance ) { snxt=0 ; }
1583 
1584  return snxt ;
1585 }
G4bool fPhiFullTube
Definition: G4Tubs.hh:226
static constexpr double mm
Definition: G4SIunits.hh:115
static const G4double kInfinity
Definition: geomdefs.hh:42
CLHEP::Hep3Vector G4ThreeVector
double x() const
G4double fDPhi
Definition: G4Tubs.hh:217
G4double halfCarTolerance
Definition: G4Tubs.hh:230
static const G4double d2
G4double cosEPhi
Definition: G4Tubs.hh:221
int G4int
Definition: G4Types.hh:78
double z() const
void DumpInfo() const
static constexpr double twopi
Definition: G4SIunits.hh:76
tuple b
Definition: test.py:12
G4double sinSPhi
Definition: G4Tubs.hh:221
G4GLOB_DLL std::ostream G4cout
G4double fRMin
Definition: G4Tubs.hh:217
G4double cosCPhi
Definition: G4Tubs.hh:221
G4double fSPhi
Definition: G4Tubs.hh:217
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
G4double sinEPhi
Definition: G4Tubs.hh:221
G4double halfAngTolerance
Definition: G4Tubs.hh:230
tuple t1
Definition: plottest35.py:33
double y() const
G4double fRMax
Definition: G4Tubs.hh:217
#define G4endl
Definition: G4ios.hh:61
G4double kCarTolerance
Definition: G4VSolid.hh:307
G4double kRadTolerance
Definition: G4Tubs.hh:213
static constexpr double pi
Definition: G4SIunits.hh:75
G4double fDz
Definition: G4Tubs.hh:217
ESide
Definition: G4Cons.cc:76
G4double cosSPhi
Definition: G4Tubs.hh:221
double G4double
Definition: G4Types.hh:76
tuple c
Definition: test.py:13
G4double sinCPhi
Definition: G4Tubs.hh:221

Here is the call graph for this function:

G4double G4Tubs::DistanceToOut ( const G4ThreeVector p) const
virtual

Implements G4VSolid.

Definition at line 1591 of file G4Tubs.cc.

1592 {
1593  G4double safe=0.0, rho, safeR1, safeR2, safeZ, safePhi ;
1594  rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ;
1595 
1596 #ifdef G4CSGDEBUG
1597  if( Inside(p) == kOutside )
1598  {
1599  G4int oldprc = G4cout.precision(16) ;
1600  G4cout << G4endl ;
1601  DumpInfo();
1602  G4cout << "Position:" << G4endl << G4endl ;
1603  G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ;
1604  G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ;
1605  G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ;
1606  G4cout.precision(oldprc) ;
1607  G4Exception("G4Tubs::DistanceToOut(p)", "GeomSolids1002",
1608  JustWarning, "Point p is outside !?");
1609  }
1610 #endif
1611 
1612  if ( fRMin )
1613  {
1614  safeR1 = rho - fRMin ;
1615  safeR2 = fRMax - rho ;
1616 
1617  if ( safeR1 < safeR2 ) { safe = safeR1 ; }
1618  else { safe = safeR2 ; }
1619  }
1620  else
1621  {
1622  safe = fRMax - rho ;
1623  }
1624  safeZ = fDz - std::fabs(p.z()) ;
1625 
1626  if ( safeZ < safe ) { safe = safeZ ; }
1627 
1628  // Check if phi divided, Calc distances closest phi plane
1629  //
1630  if ( !fPhiFullTube )
1631  {
1632  if ( p.y()*cosCPhi-p.x()*sinCPhi <= 0 )
1633  {
1634  safePhi = -(p.x()*sinSPhi - p.y()*cosSPhi) ;
1635  }
1636  else
1637  {
1638  safePhi = (p.x()*sinEPhi - p.y()*cosEPhi) ;
1639  }
1640  if (safePhi < safe) { safe = safePhi ; }
1641  }
1642  if ( safe < 0 ) { safe = 0 ; }
1643 
1644  return safe ;
1645 }
G4bool fPhiFullTube
Definition: G4Tubs.hh:226
static constexpr double mm
Definition: G4SIunits.hh:115
double x() const
G4double cosEPhi
Definition: G4Tubs.hh:221
int G4int
Definition: G4Types.hh:78
double z() const
void DumpInfo() const
G4double sinSPhi
Definition: G4Tubs.hh:221
G4GLOB_DLL std::ostream G4cout
G4double fRMin
Definition: G4Tubs.hh:217
G4double cosCPhi
Definition: G4Tubs.hh:221
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
G4double sinEPhi
Definition: G4Tubs.hh:221
EInside Inside(const G4ThreeVector &p) const
Definition: G4Tubs.cc:364
double y() const
G4double fRMax
Definition: G4Tubs.hh:217
#define G4endl
Definition: G4ios.hh:61
G4double fDz
Definition: G4Tubs.hh:217
G4double cosSPhi
Definition: G4Tubs.hh:221
double G4double
Definition: G4Types.hh:76
G4double sinCPhi
Definition: G4Tubs.hh:221

Here is the call graph for this function:

void G4Tubs::Extent ( G4ThreeVector pMin,
G4ThreeVector pMax 
) const
virtual

Reimplemented from G4VSolid.

Definition at line 212 of file G4Tubs.cc.

213 {
214  G4double rmin = GetInnerRadius();
215  G4double rmax = GetOuterRadius();
216  G4double dz = GetZHalfLength();
217 
218  // Find bounding box
219  //
220  if (GetDeltaPhiAngle() < twopi)
221  {
222  G4TwoVector vmin,vmax;
223  G4GeomTools::DiskExtent(rmin,rmax,
226  vmin,vmax);
227  pMin.set(vmin.x(),vmin.y(),-dz);
228  pMax.set(vmax.x(),vmax.y(), dz);
229  }
230  else
231  {
232  pMin.set(-rmax,-rmax,-dz);
233  pMax.set( rmax, rmax, dz);
234  }
235 
236  // Check correctness of the bounding box
237  //
238  if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
239  {
240  std::ostringstream message;
241  message << "Bad bounding box (min >= max) for solid: "
242  << GetName() << " !"
243  << "\npMin = " << pMin
244  << "\npMax = " << pMax;
245  G4Exception("G4Tubs::Extent()", "GeomMgt0001", JustWarning, message);
246  DumpInfo();
247  }
248 }
void set(double x, double y, double z)
G4String GetName() const
double y() const
double x() const
double x() const
G4double GetCosEndPhi() const
double z() const
void DumpInfo() const
static constexpr double twopi
Definition: G4SIunits.hh:76
G4double GetDeltaPhiAngle() const
G4double GetSinEndPhi() const
G4double GetSinStartPhi() const
G4double GetInnerRadius() const
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
double y() const
G4double GetZHalfLength() const
double G4double
Definition: G4Types.hh:76
G4double GetCosStartPhi() const
static G4bool DiskExtent(G4double rmin, G4double rmax, G4double startPhi, G4double delPhi, G4TwoVector &pmin, G4TwoVector &pmax)
Definition: G4GeomTools.cc:378
G4double GetOuterRadius() const

Here is the call graph for this function:

Here is the caller graph for this function:

G4double G4Tubs::GetCosEndPhi ( ) const
inline

Here is the caller graph for this function:

G4double G4Tubs::GetCosStartPhi ( ) const
inline

Here is the caller graph for this function:

G4double G4Tubs::GetCubicVolume ( )
inlinevirtual

Reimplemented from G4VSolid.

G4double G4Tubs::GetDeltaPhiAngle ( ) const
inline

Here is the caller graph for this function:

G4double G4Tubs::GetDPhi ( ) const
inline

Here is the caller graph for this function:

G4double G4Tubs::GetDz ( ) const
inline

Here is the caller graph for this function:

G4GeometryType G4Tubs::GetEntityType ( ) const
virtual

Implements G4VSolid.

Definition at line 1651 of file G4Tubs.cc.

1652 {
1653  return G4String("G4Tubs");
1654 }
G4double G4Tubs::GetInnerRadius ( ) const
inline

Here is the caller graph for this function:

G4double G4Tubs::GetOuterRadius ( ) const
inline

Here is the caller graph for this function:

G4ThreeVector G4Tubs::GetPointOnSurface ( ) const
virtual

Reimplemented from G4VSolid.

Definition at line 1692 of file G4Tubs.cc.

1693 {
1694  G4double xRand, yRand, zRand, phi, cosphi, sinphi, chose,
1695  aOne, aTwo, aThr, aFou;
1696  G4double rRand;
1697 
1698  aOne = 2.*fDz*fDPhi*fRMax;
1699  aTwo = 2.*fDz*fDPhi*fRMin;
1700  aThr = 0.5*fDPhi*(fRMax*fRMax-fRMin*fRMin);
1701  aFou = 2.*fDz*(fRMax-fRMin);
1702 
1704  cosphi = std::cos(phi);
1705  sinphi = std::sin(phi);
1706 
1707  rRand = GetRadiusInRing(fRMin,fRMax);
1708 
1709  if( (fSPhi == 0) && (fDPhi == twopi) ) { aFou = 0; }
1710 
1711  chose = G4RandFlat::shoot(0.,aOne+aTwo+2.*aThr+2.*aFou);
1712 
1713  if( (chose >=0) && (chose < aOne) )
1714  {
1715  xRand = fRMax*cosphi;
1716  yRand = fRMax*sinphi;
1717  zRand = G4RandFlat::shoot(-1.*fDz,fDz);
1718  return G4ThreeVector (xRand, yRand, zRand);
1719  }
1720  else if( (chose >= aOne) && (chose < aOne + aTwo) )
1721  {
1722  xRand = fRMin*cosphi;
1723  yRand = fRMin*sinphi;
1724  zRand = G4RandFlat::shoot(-1.*fDz,fDz);
1725  return G4ThreeVector (xRand, yRand, zRand);
1726  }
1727  else if( (chose >= aOne + aTwo) && (chose < aOne + aTwo + aThr) )
1728  {
1729  xRand = rRand*cosphi;
1730  yRand = rRand*sinphi;
1731  zRand = fDz;
1732  return G4ThreeVector (xRand, yRand, zRand);
1733  }
1734  else if( (chose >= aOne + aTwo + aThr) && (chose < aOne + aTwo + 2.*aThr) )
1735  {
1736  xRand = rRand*cosphi;
1737  yRand = rRand*sinphi;
1738  zRand = -1.*fDz;
1739  return G4ThreeVector (xRand, yRand, zRand);
1740  }
1741  else if( (chose >= aOne + aTwo + 2.*aThr)
1742  && (chose < aOne + aTwo + 2.*aThr + aFou) )
1743  {
1744  xRand = rRand*std::cos(fSPhi);
1745  yRand = rRand*std::sin(fSPhi);
1746  zRand = G4RandFlat::shoot(-1.*fDz,fDz);
1747  return G4ThreeVector (xRand, yRand, zRand);
1748  }
1749  else
1750  {
1751  xRand = rRand*std::cos(fSPhi+fDPhi);
1752  yRand = rRand*std::sin(fSPhi+fDPhi);
1753  zRand = G4RandFlat::shoot(-1.*fDz,fDz);
1754  return G4ThreeVector (xRand, yRand, zRand);
1755  }
1756 }
ThreeVector shoot(const G4int Ap, const G4int Af)
CLHEP::Hep3Vector G4ThreeVector
G4double fDPhi
Definition: G4Tubs.hh:217
G4double GetRadiusInRing(G4double rmin, G4double rmax) const
Definition: G4CSGSolid.cc:111
static constexpr double twopi
Definition: G4SIunits.hh:76
G4double fRMin
Definition: G4Tubs.hh:217
G4double fSPhi
Definition: G4Tubs.hh:217
G4double fRMax
Definition: G4Tubs.hh:217
G4double fDz
Definition: G4Tubs.hh:217
double G4double
Definition: G4Types.hh:76

Here is the call graph for this function:

G4double G4Tubs::GetRMax ( ) const
inline

Here is the caller graph for this function:

G4double G4Tubs::GetRMin ( ) const
inline

Here is the caller graph for this function:

G4double G4Tubs::GetSinEndPhi ( ) const
inline

Here is the caller graph for this function:

G4double G4Tubs::GetSinStartPhi ( ) const
inline

Here is the caller graph for this function:

G4double G4Tubs::GetSPhi ( ) const
inline

Here is the caller graph for this function:

G4double G4Tubs::GetStartPhiAngle ( ) const
inline

Here is the caller graph for this function:

G4double G4Tubs::GetSurfaceArea ( )
inlinevirtual

Reimplemented from G4VSolid.

G4double G4Tubs::GetZHalfLength ( ) const
inline

Here is the caller graph for this function:

void G4Tubs::Initialize ( )
inlineprotected
void G4Tubs::InitializeTrigonometry ( )
inlineprotected
EInside G4Tubs::Inside ( const G4ThreeVector p) const
virtual

Implements G4VSolid.

Definition at line 364 of file G4Tubs.cc.

365 {
366  G4double r2,pPhi,tolRMin,tolRMax;
367  EInside in = kOutside ;
368 
369  if (std::fabs(p.z()) <= fDz - halfCarTolerance)
370  {
371  r2 = p.x()*p.x() + p.y()*p.y() ;
372 
373  if (fRMin) { tolRMin = fRMin + halfRadTolerance ; }
374  else { tolRMin = 0 ; }
375 
376  tolRMax = fRMax - halfRadTolerance ;
377 
378  if ((r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax))
379  {
380  if ( fPhiFullTube )
381  {
382  in = kInside ;
383  }
384  else
385  {
386  // Try inner tolerant phi boundaries (=>inside)
387  // if not inside, try outer tolerant phi boundaries
388 
389  if ( (tolRMin==0) && (std::fabs(p.x())<=halfCarTolerance)
390  && (std::fabs(p.y())<=halfCarTolerance) )
391  {
392  in=kSurface;
393  }
394  else
395  {
396  pPhi = std::atan2(p.y(),p.x()) ;
397  if ( pPhi < -halfAngTolerance ) { pPhi += twopi; } // 0<=pPhi<2pi
398 
399  if ( fSPhi >= 0 )
400  {
401  if ( (std::fabs(pPhi) < halfAngTolerance)
402  && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
403  {
404  pPhi += twopi ; // 0 <= pPhi < 2pi
405  }
406  if ( (pPhi >= fSPhi + halfAngTolerance)
407  && (pPhi <= fSPhi + fDPhi - halfAngTolerance) )
408  {
409  in = kInside ;
410  }
411  else if ( (pPhi >= fSPhi - halfAngTolerance)
412  && (pPhi <= fSPhi + fDPhi + halfAngTolerance) )
413  {
414  in = kSurface ;
415  }
416  }
417  else // fSPhi < 0
418  {
419  if ( (pPhi <= fSPhi + twopi - halfAngTolerance)
420  && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} //kOutside
421  else if ( (pPhi <= fSPhi + twopi + halfAngTolerance)
422  && (pPhi >= fSPhi + fDPhi - halfAngTolerance) )
423  {
424  in = kSurface ;
425  }
426  else
427  {
428  in = kInside ;
429  }
430  }
431  }
432  }
433  }
434  else // Try generous boundaries
435  {
436  tolRMin = fRMin - halfRadTolerance ;
437  tolRMax = fRMax + halfRadTolerance ;
438 
439  if ( tolRMin < 0 ) { tolRMin = 0; }
440 
441  if ( (r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax) )
442  {
443  if (fPhiFullTube || (r2 <=halfRadTolerance*halfRadTolerance) )
444  { // Continuous in phi or on z-axis
445  in = kSurface ;
446  }
447  else // Try outer tolerant phi boundaries only
448  {
449  pPhi = std::atan2(p.y(),p.x()) ;
450 
451  if ( pPhi < -halfAngTolerance) { pPhi += twopi; } // 0<=pPhi<2pi
452  if ( fSPhi >= 0 )
453  {
454  if ( (std::fabs(pPhi) < halfAngTolerance)
455  && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
456  {
457  pPhi += twopi ; // 0 <= pPhi < 2pi
458  }
459  if ( (pPhi >= fSPhi - halfAngTolerance)
460  && (pPhi <= fSPhi + fDPhi + halfAngTolerance) )
461  {
462  in = kSurface ;
463  }
464  }
465  else // fSPhi < 0
466  {
467  if ( (pPhi <= fSPhi + twopi - halfAngTolerance)
468  && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} // kOutside
469  else
470  {
471  in = kSurface ;
472  }
473  }
474  }
475  }
476  }
477  }
478  else if (std::fabs(p.z()) <= fDz + halfCarTolerance)
479  { // Check within tolerant r limits
480  r2 = p.x()*p.x() + p.y()*p.y() ;
481  tolRMin = fRMin - halfRadTolerance ;
482  tolRMax = fRMax + halfRadTolerance ;
483 
484  if ( tolRMin < 0 ) { tolRMin = 0; }
485 
486  if ( (r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax) )
487  {
488  if (fPhiFullTube || (r2 <=halfRadTolerance*halfRadTolerance))
489  { // Continuous in phi or on z-axis
490  in = kSurface ;
491  }
492  else // Try outer tolerant phi boundaries
493  {
494  pPhi = std::atan2(p.y(),p.x()) ;
495 
496  if ( pPhi < -halfAngTolerance ) { pPhi += twopi; } // 0<=pPhi<2pi
497  if ( fSPhi >= 0 )
498  {
499  if ( (std::fabs(pPhi) < halfAngTolerance)
500  && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
501  {
502  pPhi += twopi ; // 0 <= pPhi < 2pi
503  }
504  if ( (pPhi >= fSPhi - halfAngTolerance)
505  && (pPhi <= fSPhi + fDPhi + halfAngTolerance) )
506  {
507  in = kSurface;
508  }
509  }
510  else // fSPhi < 0
511  {
512  if ( (pPhi <= fSPhi + twopi - halfAngTolerance)
513  && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;}
514  else
515  {
516  in = kSurface ;
517  }
518  }
519  }
520  }
521  }
522  return in;
523 }
G4bool fPhiFullTube
Definition: G4Tubs.hh:226
double x() const
G4double fDPhi
Definition: G4Tubs.hh:217
G4double halfCarTolerance
Definition: G4Tubs.hh:230
double z() const
static constexpr double twopi
Definition: G4SIunits.hh:76
G4double fRMin
Definition: G4Tubs.hh:217
G4double fSPhi
Definition: G4Tubs.hh:217
G4double halfAngTolerance
Definition: G4Tubs.hh:230
G4double halfRadTolerance
Definition: G4Tubs.hh:230
EInside
Definition: geomdefs.hh:58
double y() const
G4double fRMax
Definition: G4Tubs.hh:217
G4double fDz
Definition: G4Tubs.hh:217
double G4double
Definition: G4Types.hh:76

Here is the call graph for this function:

Here is the caller graph for this function:

G4Tubs & G4Tubs::operator= ( const G4Tubs rhs)

Definition at line 169 of file G4Tubs.cc.

170 {
171  // Check assignment to self
172  //
173  if (this == &rhs) { return *this; }
174 
175  // Copy base class data
176  //
178 
179  // Copy data
180  //
182  fRMin = rhs.fRMin; fRMax = rhs.fRMax; fDz = rhs.fDz;
183  fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi;
184  sinCPhi = rhs.sinCPhi; cosCPhi = rhs.cosCPhi;
186  sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPhi;
187  sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPhi;
192 
193  return *this;
194 }
G4bool fPhiFullTube
Definition: G4Tubs.hh:226
G4double fDPhi
Definition: G4Tubs.hh:217
G4double halfCarTolerance
Definition: G4Tubs.hh:230
G4double cosEPhi
Definition: G4Tubs.hh:221
G4double cosHDPhiOT
Definition: G4Tubs.hh:221
G4double sinSPhi
Definition: G4Tubs.hh:221
G4double fRMin
Definition: G4Tubs.hh:217
G4double cosCPhi
Definition: G4Tubs.hh:221
G4double fSPhi
Definition: G4Tubs.hh:217
G4double sinEPhi
Definition: G4Tubs.hh:221
G4double halfAngTolerance
Definition: G4Tubs.hh:230
G4double halfRadTolerance
Definition: G4Tubs.hh:230
G4double fRMax
Definition: G4Tubs.hh:217
G4double kRadTolerance
Definition: G4Tubs.hh:213
G4double fDz
Definition: G4Tubs.hh:217
G4double cosSPhi
Definition: G4Tubs.hh:221
G4CSGSolid & operator=(const G4CSGSolid &rhs)
Definition: G4CSGSolid.cc:91
G4double cosHDPhiIT
Definition: G4Tubs.hh:221
G4double sinCPhi
Definition: G4Tubs.hh:221
G4double kAngTolerance
Definition: G4Tubs.hh:213

Here is the call graph for this function:

void G4Tubs::SetDeltaPhiAngle ( G4double  newDPhi)
inline

Here is the caller graph for this function:

void G4Tubs::SetInnerRadius ( G4double  newRMin)
inline

Here is the caller graph for this function:

void G4Tubs::SetOuterRadius ( G4double  newRMax)
inline

Here is the caller graph for this function:

void G4Tubs::SetStartPhiAngle ( G4double  newSPhi,
G4bool  trig = true 
)
inline

Here is the caller graph for this function:

void G4Tubs::SetZHalfLength ( G4double  newDz)
inline

Here is the caller graph for this function:

std::ostream & G4Tubs::StreamInfo ( std::ostream &  os) const
virtual

Reimplemented from G4CSGSolid.

Definition at line 1669 of file G4Tubs.cc.

1670 {
1671  G4int oldprc = os.precision(16);
1672  os << "-----------------------------------------------------------\n"
1673  << " *** Dump for solid - " << GetName() << " ***\n"
1674  << " ===================================================\n"
1675  << " Solid type: G4Tubs\n"
1676  << " Parameters: \n"
1677  << " inner radius : " << fRMin/mm << " mm \n"
1678  << " outer radius : " << fRMax/mm << " mm \n"
1679  << " half length Z: " << fDz/mm << " mm \n"
1680  << " starting phi : " << fSPhi/degree << " degrees \n"
1681  << " delta phi : " << fDPhi/degree << " degrees \n"
1682  << "-----------------------------------------------------------\n";
1683  os.precision(oldprc);
1684 
1685  return os;
1686 }
G4String GetName() const
static constexpr double mm
Definition: G4SIunits.hh:115
G4double fDPhi
Definition: G4Tubs.hh:217
int G4int
Definition: G4Types.hh:78
G4double fRMin
Definition: G4Tubs.hh:217
static constexpr double degree
Definition: G4SIunits.hh:144
G4double fSPhi
Definition: G4Tubs.hh:217
G4double fRMax
Definition: G4Tubs.hh:217
G4double fDz
Definition: G4Tubs.hh:217

Here is the call graph for this function:

G4ThreeVector G4Tubs::SurfaceNormal ( const G4ThreeVector p) const
virtual

Implements G4VSolid.

Definition at line 531 of file G4Tubs.cc.

532 {
533  G4int noSurfaces = 0;
534  G4double rho, pPhi;
535  G4double distZ, distRMin, distRMax;
536  G4double distSPhi = kInfinity, distEPhi = kInfinity;
537 
538  G4ThreeVector norm, sumnorm(0.,0.,0.);
539  G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0);
540  G4ThreeVector nR, nPs, nPe;
541 
542  rho = std::sqrt(p.x()*p.x() + p.y()*p.y());
543 
544  distRMin = std::fabs(rho - fRMin);
545  distRMax = std::fabs(rho - fRMax);
546  distZ = std::fabs(std::fabs(p.z()) - fDz);
547 
548  if (!fPhiFullTube) // Protected against (0,0,z)
549  {
550  if ( rho > halfCarTolerance )
551  {
552  pPhi = std::atan2(p.y(),p.x());
553 
554  if(pPhi < fSPhi- halfCarTolerance) { pPhi += twopi; }
555  else if(pPhi > fSPhi+fDPhi+ halfCarTolerance) { pPhi -= twopi; }
556 
557  distSPhi = std::fabs(pPhi - fSPhi);
558  distEPhi = std::fabs(pPhi - fSPhi - fDPhi);
559  }
560  else if( !fRMin )
561  {
562  distSPhi = 0.;
563  distEPhi = 0.;
564  }
565  nPs = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0);
566  nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0);
567  }
568  if ( rho > halfCarTolerance ) { nR = G4ThreeVector(p.x()/rho,p.y()/rho,0); }
569 
570  if( distRMax <= halfCarTolerance )
571  {
572  noSurfaces ++;
573  sumnorm += nR;
574  }
575  if( fRMin && (distRMin <= halfCarTolerance) )
576  {
577  noSurfaces ++;
578  sumnorm -= nR;
579  }
580  if( fDPhi < twopi )
581  {
582  if (distSPhi <= halfAngTolerance)
583  {
584  noSurfaces ++;
585  sumnorm += nPs;
586  }
587  if (distEPhi <= halfAngTolerance)
588  {
589  noSurfaces ++;
590  sumnorm += nPe;
591  }
592  }
593  if (distZ <= halfCarTolerance)
594  {
595  noSurfaces ++;
596  if ( p.z() >= 0.) { sumnorm += nZ; }
597  else { sumnorm -= nZ; }
598  }
599  if ( noSurfaces == 0 )
600  {
601 #ifdef G4CSGDEBUG
602  G4Exception("G4Tubs::SurfaceNormal(p)", "GeomSolids1002",
603  JustWarning, "Point p is not on surface !?" );
604  G4int oldprc = G4cout.precision(20);
605  G4cout<< "G4Tubs::SN ( "<<p.x()<<", "<<p.y()<<", "<<p.z()<<" ); "
606  << G4endl << G4endl;
607  G4cout.precision(oldprc) ;
608 #endif
609  norm = ApproxSurfaceNormal(p);
610  }
611  else if ( noSurfaces == 1 ) { norm = sumnorm; }
612  else { norm = sumnorm.unit(); }
613 
614  return norm;
615 }
G4bool fPhiFullTube
Definition: G4Tubs.hh:226
static const G4double kInfinity
Definition: geomdefs.hh:42
CLHEP::Hep3Vector G4ThreeVector
double x() const
G4double fDPhi
Definition: G4Tubs.hh:217
G4double halfCarTolerance
Definition: G4Tubs.hh:230
virtual G4ThreeVector ApproxSurfaceNormal(const G4ThreeVector &p) const
Definition: G4Tubs.cc:622
int G4int
Definition: G4Types.hh:78
double z() const
static constexpr double twopi
Definition: G4SIunits.hh:76
G4GLOB_DLL std::ostream G4cout
G4double fRMin
Definition: G4Tubs.hh:217
G4double fSPhi
Definition: G4Tubs.hh:217
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
G4double halfAngTolerance
Definition: G4Tubs.hh:230
Hep3Vector unit() const
double y() const
G4double fRMax
Definition: G4Tubs.hh:217
#define G4endl
Definition: G4ios.hh:61
G4double fDz
Definition: G4Tubs.hh:217
double G4double
Definition: G4Types.hh:76

Here is the call graph for this function:

Member Data Documentation

G4double G4Tubs::cosCPhi
protected

Definition at line 221 of file G4Tubs.hh.

G4double G4Tubs::cosEPhi
protected

Definition at line 221 of file G4Tubs.hh.

G4double G4Tubs::cosHDPhiIT
protected

Definition at line 221 of file G4Tubs.hh.

G4double G4Tubs::cosHDPhiOT
protected

Definition at line 221 of file G4Tubs.hh.

G4double G4Tubs::cosSPhi
protected

Definition at line 221 of file G4Tubs.hh.

G4double G4Tubs::fDPhi
protected

Definition at line 217 of file G4Tubs.hh.

G4double G4Tubs::fDz
protected

Definition at line 217 of file G4Tubs.hh.

G4bool G4Tubs::fPhiFullTube
protected

Definition at line 226 of file G4Tubs.hh.

G4double G4Tubs::fRMax
protected

Definition at line 217 of file G4Tubs.hh.

G4double G4Tubs::fRMin
protected

Definition at line 217 of file G4Tubs.hh.

G4double G4Tubs::fSPhi
protected

Definition at line 217 of file G4Tubs.hh.

G4double G4Tubs::halfAngTolerance
protected

Definition at line 230 of file G4Tubs.hh.

G4double G4Tubs::halfCarTolerance
protected

Definition at line 230 of file G4Tubs.hh.

G4double G4Tubs::halfRadTolerance
protected

Definition at line 230 of file G4Tubs.hh.

G4double G4Tubs::kAngTolerance
protected

Definition at line 213 of file G4Tubs.hh.

G4double G4Tubs::kRadTolerance
protected

Definition at line 213 of file G4Tubs.hh.

G4double G4Tubs::sinCPhi
protected

Definition at line 221 of file G4Tubs.hh.

G4double G4Tubs::sinEPhi
protected

Definition at line 221 of file G4Tubs.hh.

G4double G4Tubs::sinSPhi
protected

Definition at line 221 of file G4Tubs.hh.


The documentation for this class was generated from the following files: