Geant4  10.03.p03
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4ChipsPionPlusElasticXS Class Reference

#include <G4ChipsPionPlusElasticXS.hh>

Inheritance diagram for G4ChipsPionPlusElasticXS:
Collaboration diagram for G4ChipsPionPlusElasticXS:

Public Member Functions

 G4ChipsPionPlusElasticXS ()
 
 ~G4ChipsPionPlusElasticXS ()
 
virtual void CrossSectionDescription (std::ostream &) const
 
virtual G4bool IsIsoApplicable (const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
 
virtual G4double GetIsoCrossSection (const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
 
virtual G4double GetChipsCrossSection (G4double momentum, G4int Z, G4int N, G4int pdg)
 
G4double GetExchangeT (G4int tZ, G4int tN, G4int pPDG)
 
- Public Member Functions inherited from G4VCrossSectionDataSet
 G4VCrossSectionDataSet (const G4String &nam="")
 
virtual ~G4VCrossSectionDataSet ()
 
virtual G4bool IsElementApplicable (const G4DynamicParticle *, G4int Z, const G4Material *mat=0)
 
G4double GetCrossSection (const G4DynamicParticle *, const G4Element *, const G4Material *mat=0)
 
G4double ComputeCrossSection (const G4DynamicParticle *, const G4Element *, const G4Material *mat=0)
 
virtual G4double GetElementCrossSection (const G4DynamicParticle *, G4int Z, const G4Material *mat=0)
 
virtual G4IsotopeSelectIsotope (const G4Element *, G4double kinEnergy)
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 
virtual void DumpPhysicsTable (const G4ParticleDefinition &)
 
virtual G4int GetVerboseLevel () const
 
virtual void SetVerboseLevel (G4int value)
 
G4double GetMinKinEnergy () const
 
void SetMinKinEnergy (G4double value)
 
G4double GetMaxKinEnergy () const
 
void SetMaxKinEnergy (G4double value)
 
const G4StringGetName () const
 

Static Public Member Functions

static const char * Default_Name ()
 

Additional Inherited Members

- Protected Member Functions inherited from G4VCrossSectionDataSet
void SetName (const G4String &)
 
- Protected Attributes inherited from G4VCrossSectionDataSet
G4int verboseLevel
 

Detailed Description

Definition at line 46 of file G4ChipsPionPlusElasticXS.hh.

Constructor & Destructor Documentation

G4ChipsPionPlusElasticXS::G4ChipsPionPlusElasticXS ( )

Definition at line 58 of file G4ChipsPionPlusElasticXS.cc.

58  :G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
59 {
60  lPMin=-8.; // Min tabulated logarithmMomentum(D)
61  lPMax= 8.; // Max tabulated logarithmMomentum(D)
62  dlnP=(lPMax-lPMin)/nLast;// LogStep inTheTable(D)
63  onlyCS=true;// Flag toCalcul OnlyCS(not Si/Bi)(L)
64  lastSIG=0.; // Last calculated cross section (L)
65  lastLP=-10.;// Last log(mom_of IncidentHadron)(L)
66  lastTM=0.; // Last t_maximum (L)
67  theSS=0.; // TheLastSqSlope of 1st difr.Max(L)
68  theS1=0.; // TheLastMantissa of 1st difr.Max(L)
69  theB1=0.; // TheLastSlope of 1st difruct.Max(L)
70  theS2=0.; // TheLastMantissa of 2nd difr.Max(L)
71  theB2=0.; // TheLastSlope of 2nd difruct.Max(L)
72  theS3=0.; // TheLastMantissa of 3d difr. Max(L)
73  theB3=0.; // TheLastSlope of 3d difruct. Max(L)
74  theS4=0.; // TheLastMantissa of 4th difr.Max(L)
75  theB4=0.; // TheLastSlope of 4th difruct.Max(L)
76  lastTZ=0; // Last atomic number of the target
77  lastTN=0; // Last # of neutrons in the target
78  lastPIN=0.; // Last initialized max momentum
79  lastCST=0; // Elastic cross-section table
80  lastPAR=0; // ParametersForFunctionalCalculation
81  lastSST=0; // E-dep of SqaredSlope of 1st difMax
82  lastS1T=0; // E-dep of mantissa of 1st dif.Max
83  lastB1T=0; // E-dep of the slope of 1st difMax
84  lastS2T=0; // E-dep of mantissa of 2nd difrMax
85  lastB2T=0; // E-dep of the slope of 2nd difMax
86  lastS3T=0; // E-dep of mantissa of 3d difr.Max
87  lastB3T=0; // E-dep of the slope of 3d difrMax
88  lastS4T=0; // E-dep of mantissa of 4th difrMax
89  lastB4T=0; // E-dep of the slope of 4th difMax
90  lastN=0; // The last N of calculated nucleus
91  lastZ=0; // The last Z of calculated nucleus
92  lastP=0.; // LastUsed in cross section Momentum
93  lastTH=0.; // Last threshold momentum
94  lastCS=0.; // Last value of the Cross Section
95  lastI=0; // The last position in the DAMDB
96 }
G4VCrossSectionDataSet(const G4String &nam="")
static const char * Default_Name()
G4ChipsPionPlusElasticXS::~G4ChipsPionPlusElasticXS ( )

Definition at line 98 of file G4ChipsPionPlusElasticXS.cc.

99 {
100  std::vector<G4double*>::iterator pos;
101  for (pos=CST.begin(); pos<CST.end(); pos++)
102  { delete [] *pos; }
103  CST.clear();
104  for (pos=PAR.begin(); pos<PAR.end(); pos++)
105  { delete [] *pos; }
106  PAR.clear();
107  for (pos=SST.begin(); pos<SST.end(); pos++)
108  { delete [] *pos; }
109  SST.clear();
110  for (pos=S1T.begin(); pos<S1T.end(); pos++)
111  { delete [] *pos; }
112  S1T.clear();
113  for (pos=B1T.begin(); pos<B1T.end(); pos++)
114  { delete [] *pos; }
115  B1T.clear();
116  for (pos=S2T.begin(); pos<S2T.end(); pos++)
117  { delete [] *pos; }
118  S2T.clear();
119  for (pos=B2T.begin(); pos<B2T.end(); pos++)
120  { delete [] *pos; }
121  B2T.clear();
122  for (pos=S3T.begin(); pos<S3T.end(); pos++)
123  { delete [] *pos; }
124  S3T.clear();
125  for (pos=B3T.begin(); pos<B3T.end(); pos++)
126  { delete [] *pos; }
127  B3T.clear();
128  for (pos=S4T.begin(); pos<S4T.end(); pos++)
129  { delete [] *pos; }
130  S4T.clear();
131  for (pos=B4T.begin(); pos<B4T.end(); pos++)
132  { delete [] *pos; }
133  B4T.clear();
134 }
static const G4double pos

Member Function Documentation

void G4ChipsPionPlusElasticXS::CrossSectionDescription ( std::ostream &  outFile) const
virtual

Reimplemented from G4VCrossSectionDataSet.

Definition at line 137 of file G4ChipsPionPlusElasticXS.cc.

138 {
139  outFile << "G4ChipsPionPlusElasticXS provides the elastic cross\n"
140  << "section for pion+ nucleus scattering as a function of incident\n"
141  << "momentum. The cross section is calculated using M. Kossov's\n"
142  << "CHIPS parameterization of cross section data.\n";
143 }
static const char* G4ChipsPionPlusElasticXS::Default_Name ( )
inlinestatic

Definition at line 54 of file G4ChipsPionPlusElasticXS.hh.

54 {return "ChipsPionPlusElasticXS";}

Here is the caller graph for this function:

G4double G4ChipsPionPlusElasticXS::GetChipsCrossSection ( G4double  momentum,
G4int  Z,
G4int  N,
G4int  pdg 
)
virtual

!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)

Definition at line 166 of file G4ChipsPionPlusElasticXS.cc.

167 {
168  G4double pEn=pMom;
169  G4bool fCS = false;
170  onlyCS=fCS;
171 
172  G4bool in=false; // By default the isotope must be found in the AMDB
173  lastP = 0.; // New momentum history (nothing to compare with)
174  lastN = tgN; // The last N of the calculated nucleus
175  lastZ = tgZ; // The last Z of the calculated nucleus
176  lastI = colN.size(); // Size of the Associative Memory DB in the heap
177  if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
178  { // The nucleus with projPDG is found in AMDB
179  if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
180  {
181  lastI=i;
182  lastTH =colTH[i]; // Last THreshold (A-dependent)
183  if(pEn<=lastTH)
184  {
185  return 0.; // Energy is below the Threshold value
186  }
187  lastP =colP [i]; // Last Momentum (A-dependent)
188  lastCS =colCS[i]; // Last CrossSect (A-dependent)
189  // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
190  if(lastP == pMom) // Do not recalculate
191  {
192  CalculateCrossSection(fCS,-1,i,211,lastZ,lastN,pMom); // Update param's only
193  return lastCS*millibarn; // Use theLastCS
194  }
195  in = true; // This is the case when the isotop is found in DB
196  // Momentum pMom is in IU ! @@ Units
197  lastCS=CalculateCrossSection(fCS,-1,i,211,lastZ,lastN,pMom); // read & update
198  if(lastCS<=0. && pEn>lastTH) // Correct the threshold
199  {
200  lastTH=pEn;
201  }
202  break; // Go out of the LOOP with found lastI
203  }
204  } // End of attampt to find the nucleus in DB
205  if(!in) // This nucleus has not been calculated previously
206  {
208  lastCS=CalculateCrossSection(fCS,0,lastI,211,lastZ,lastN,pMom);//calculate&create
209  if(lastCS<=0.)
210  {
211  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
212  if(pEn>lastTH)
213  {
214  lastTH=pEn;
215  }
216  }
217  colN.push_back(tgN);
218  colZ.push_back(tgZ);
219  colP.push_back(pMom);
220  colTH.push_back(lastTH);
221  colCS.push_back(lastCS);
222  return lastCS*millibarn;
223  } // End of creation of the new set of parameters
224  else
225  {
226  colP[lastI]=pMom;
227  colCS[lastI]=lastCS;
228  }
229  return lastCS*millibarn;
230 }
int G4int
Definition: G4Types.hh:78
bool G4bool
Definition: G4Types.hh:79
double G4double
Definition: G4Types.hh:76
static constexpr double millibarn
Definition: G4SIunits.hh:106

Here is the caller graph for this function:

G4double G4ChipsPionPlusElasticXS::GetExchangeT ( G4int  tZ,
G4int  tN,
G4int  pPDG 
)

Definition at line 602 of file G4ChipsPionPlusElasticXS.cc.

603 {
604  static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
605  static const G4double third=1./3.;
606  static const G4double fifth=1./5.;
607  static const G4double sevth=1./7.;
608  if(PDG!= 211)G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetExT:PDG="<<PDG<<G4endl;
609  if(onlyCS)G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetExchanT:onlyCS=1"<<G4endl;
610  if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
611  G4double q2=0.;
612  if(tgZ==1 && tgN==0) // ===> p+p=p+p
613  {
614  G4double E1=lastTM*theB1;
615  G4double R1=(1.-G4Exp(-E1));
616  G4double E2=lastTM*theB2;
617  G4double R2=(1.-G4Exp(-E2*E2*E2));
618  G4double E3=lastTM*theB3;
619  G4double R3=(1.-G4Exp(-E3));
620  G4double I1=R1*theS1/theB1;
621  G4double I2=R2*theS2;
622  G4double I3=R3*theS3;
623  G4double I12=I1+I2;
624  G4double rand=(I12+I3)*G4UniformRand();
625  if (rand<I1 )
626  {
627  G4double ran=R1*G4UniformRand();
628  if(ran>1.) ran=1.;
629  q2=-G4Log(1.-ran)/theB1;
630  }
631  else if(rand<I12)
632  {
633  G4double ran=R2*G4UniformRand();
634  if(ran>1.) ran=1.;
635  q2=-G4Log(1.-ran);
636  if(q2<0.) q2=0.;
637  q2=G4Pow::GetInstance()->powA(q2,third)/theB2;
638  }
639  else
640  {
641  G4double ran=R3*G4UniformRand();
642  if(ran>1.) ran=1.;
643  q2=-G4Log(1.-ran)/theB3;
644  }
645  }
646  else
647  {
648  G4double a=tgZ+tgN;
649  G4double E1=lastTM*(theB1+lastTM*theSS);
650  G4double R1=(1.-G4Exp(-E1));
651  G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
652  G4double tm2=lastTM*lastTM;
653  G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
654  if(a>6.5)E2*=tm2; // for heavy nuclei
655  G4double R2=(1.-G4Exp(-E2));
656  G4double E3=lastTM*theB3;
657  if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
658  G4double R3=(1.-G4Exp(-E3));
659  G4double E4=lastTM*theB4;
660  G4double R4=(1.-G4Exp(-E4));
661  G4double I1=R1*theS1;
662  G4double I2=R2*theS2;
663  G4double I3=R3*theS3;
664  G4double I4=R4*theS4;
665  G4double I12=I1+I2;
666  G4double I13=I12+I3;
667  G4double rand=(I13+I4)*G4UniformRand();
668  if(rand<I1)
669  {
670  G4double ran=R1*G4UniformRand();
671  if(ran>1.) ran=1.;
672  q2=-G4Log(1.-ran)/theB1;
673  if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
674  }
675  else if(rand<I12)
676  {
677  G4double ran=R2*G4UniformRand();
678  if(ran>1.) ran=1.;
679  q2=-G4Log(1.-ran)/theB2;
680  if(q2<0.) q2=0.;
681  if(a<6.5) q2=G4Pow::GetInstance()->powA(q2,third);
682  else q2=G4Pow::GetInstance()->powA(q2,fifth);
683  }
684  else if(rand<I13)
685  {
686  G4double ran=R3*G4UniformRand();
687  if(ran>1.) ran=1.;
688  q2=-G4Log(1.-ran)/theB3;
689  if(q2<0.) q2=0.;
690  if(a>6.5) q2=G4Pow::GetInstance()->powA(q2,sevth);
691  }
692  else
693  {
694  G4double ran=R4*G4UniformRand();
695  if(ran>1.) ran=1.;
696  q2=-G4Log(1.-ran)/theB4;
697  if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
698  }
699  }
700  if(q2<0.) q2=0.;
701  if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl;
702  if(q2>lastTM)
703  {
704  q2=lastTM;
705  }
706  return q2*GeVSQ;
707 }
static G4Pow * GetInstance()
Definition: G4Pow.cc:55
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:259
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
#define G4UniformRand()
Definition: Randomize.hh:97
G4GLOB_DLL std::ostream G4cout
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
static constexpr double gigaelectronvolt
Definition: G4SIunits.hh:209
#define G4endl
Definition: G4ios.hh:61
double G4double
Definition: G4Types.hh:76

Here is the call graph for this function:

Here is the caller graph for this function:

G4double G4ChipsPionPlusElasticXS::GetIsoCrossSection ( const G4DynamicParticle Pt,
G4int  tgZ,
G4int  A,
const G4Isotope iso = 0,
const G4Element elm = 0,
const G4Material mat = 0 
)
virtual

Reimplemented from G4VCrossSectionDataSet.

Definition at line 154 of file G4ChipsPionPlusElasticXS.cc.

159 {
160  G4double pMom=Pt->GetTotalMomentum();
161  G4int tgN = A - tgZ;
162 
163  return GetChipsCrossSection(pMom, tgZ, tgN, 211);
164 }
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
int G4int
Definition: G4Types.hh:78
G4double GetTotalMomentum() const
double A(double temperature)
double G4double
Definition: G4Types.hh:76

Here is the call graph for this function:

G4bool G4ChipsPionPlusElasticXS::IsIsoApplicable ( const G4DynamicParticle Pt,
G4int  Z,
G4int  A,
const G4Element elm,
const G4Material mat 
)
virtual

Reimplemented from G4VCrossSectionDataSet.

Definition at line 145 of file G4ChipsPionPlusElasticXS.cc.

148 {
149  return true;
150 }

The documentation for this class was generated from the following files: