Geant4  10.03.p03
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4AblaFission Class Reference

#include <G4AblaFission.hh>

Inheritance diagram for G4AblaFission:
Collaboration diagram for G4AblaFission:

Public Member Functions

 G4AblaFission ()
 
 ~G4AblaFission ()
 
void doFission (G4double &A, G4double &Z, G4double &E, G4double &A1, G4double &Z1, G4double &E1, G4double &K1, G4double &A2, G4double &Z2, G4double &E2, G4double &K2)
 
G4double spdef (G4int a, G4int z, G4int optxfis)
 
G4double fissility (G4int a, G4int z, G4int optxfis)
 
void even_odd (G4double r_origin, G4double r_even_odd, G4int &i_out)
 
G4double umass (G4double z, G4double n, G4double beta)
 
G4double ecoul (G4double z1, G4double n1, G4double beta1, G4double z2, G4double n2, G4double beta2, G4double d)
 
void fissionDistri (G4double &a, G4double &z, G4double &e, G4double &a1, G4double &z1, G4double &e1, G4double &v1, G4double &a2, G4double &z2, G4double &e2, G4double &v2)
 
void standardRandom (G4double *rndm, G4long *seed)
 
G4double haz (G4int k)
 
G4double gausshaz (int k, double xmoy, double sig)
 
G4int min (G4int a, G4int b)
 
G4double min (G4double a, G4double b)
 
G4int max (G4int a, G4int b)
 
G4double max (G4double a, G4double b)
 
G4int nint (G4double number)
 
G4int secnds (G4int x)
 
G4int mod (G4int a, G4int b)
 
G4double dmod (G4double a, G4double b)
 
G4double dint (G4double a)
 
G4int idint (G4double a)
 
G4double utilabs (G4double a)
 
G4double dmin1 (G4double a, G4double b, G4double c)
 
- Public Member Functions inherited from G4AblaFissionBase
 G4AblaFissionBase ()
 
virtual ~G4AblaFissionBase ()
 
void setVerboseLevel (G4int level)
 
void about ()
 
void setAboutString (G4String anAbout)
 

Detailed Description

Definition at line 42 of file G4AblaFission.hh.

Constructor & Destructor Documentation

G4AblaFission::G4AblaFission ( )

Definition at line 40 of file G4AblaFission.cc.

41 {
42 }
G4AblaFission::~G4AblaFission ( )

Definition at line 44 of file G4AblaFission.cc.

45 {
46 }

Member Function Documentation

G4double G4AblaFission::dint ( G4double  a)

Definition at line 1222 of file G4AblaFission.cc.

1223 {
1224  G4double value = 0.0;
1225 
1226  if(a < 0.0) {
1227  value = double(std::ceil(a));
1228  }
1229  else {
1230  value = double(std::floor(a));
1231  }
1232 
1233  return value;
1234 }
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
const XML_Char int const XML_Char * value
Definition: expat.h:331
double G4double
Definition: G4Types.hh:76
G4double G4AblaFission::dmin1 ( G4double  a,
G4double  b,
G4double  c 
)

Definition at line 1250 of file G4AblaFission.cc.

1251 {
1252  if(a < b && a < c) {
1253  return a;
1254  }
1255  if(b < a && b < c) {
1256  return b;
1257  }
1258  if(c < a && c < b) {
1259  return c;
1260  }
1261  return a;
1262 }
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
tuple b
Definition: test.py:12
tuple c
Definition: test.py:13
G4double G4AblaFission::dmod ( G4double  a,
G4double  b 
)

Definition at line 1212 of file G4AblaFission.cc.

1213 {
1214  if(b != 0) {
1215  return (a - (a/b)*b);
1216  }
1217  else {
1218  return 0.0;
1219  }
1220 }
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
tuple b
Definition: test.py:12
void G4AblaFission::doFission ( G4double A,
G4double Z,
G4double E,
G4double A1,
G4double Z1,
G4double E1,
G4double K1,
G4double A2,
G4double Z2,
G4double E2,
G4double K2 
)
virtual

Implements G4AblaFissionBase.

Definition at line 48 of file G4AblaFission.cc.

51 {
52  fissionDistri(A,Z,E,A1,Z1,E1,K1,A2,Z2,E2,K2);
53 }
double A(double temperature)
void fissionDistri(G4double &a, G4double &z, G4double &e, G4double &a1, G4double &z1, G4double &e1, G4double &v1, G4double &a2, G4double &z2, G4double &e2, G4double &v2)

Here is the call graph for this function:

G4double G4AblaFission::ecoul ( G4double  z1,
G4double  n1,
G4double  beta1,
G4double  z2,
G4double  n2,
G4double  beta2,
G4double  d 
)

Definition at line 144 of file G4AblaFission.cc.

145 {
146  // Coulomb potential between two nuclei
147  // surfaces are in a distance of d
148  // in a tip to tip configuration
149 
150  // approximate formulation
151  // On input: Z1 nuclear charge of first nucleus
152  // N1 number of neutrons in first nucleus
153  // beta1 deformation of first nucleus
154  // Z2 nuclear charge of second nucleus
155  // N2 number of neutrons in second nucleus
156  // beta2 deformation of second nucleus
157  // d distance of surfaces of the nuclei
158 
159  // G4double Z1,N1,beta1,Z2,N2,beta2,d,ecoul;
160  G4double fecoul = 0;
161  G4double dtot = 0;
162  const G4double r0 = 1.16;
163 
164  dtot = r0 * ( std::pow((z1+n1),1.0/3.0) * (1.0+0.6666*beta1)
165  + std::pow((z2+n2),1.0/3.0) * (1.0+0.6666*beta2) ) + d;
166  fecoul = z1 * z2 * 1.44 / dtot;
167 
168  return fecoul;
169 }
double G4double
Definition: G4Types.hh:76

Here is the caller graph for this function:

void G4AblaFission::even_odd ( G4double  r_origin,
G4double  r_even_odd,
G4int i_out 
)

Definition at line 55 of file G4AblaFission.cc.

56 {
57  // Procedure to calculate I_OUT from R_IN in a way that
58  // on the average a flat distribution in R_IN results in a
59  // fluctuating distribution in I_OUT with an even-odd effect as
60  // given by R_EVEN_ODD
61 
62  // /* ------------------------------------------------------------ */
63  // /* EXAMPLES : */
64  // /* ------------------------------------------------------------ */
65  // /* If R_EVEN_ODD = 0 : */
66  // /* CEIL(R_IN) ---- */
67  // /* */
68  // /* R_IN -> */
69  // /* (somewhere in between CEIL(R_IN) and FLOOR(R_IN)) */ */
70  // /* */
71  // /* FLOOR(R_IN) ---- --> I_OUT */
72  // /* ------------------------------------------------------------ */
73  // /* If R_EVEN_ODD > 0 : */
74  // /* The interval for the above treatment is */
75  // /* larger for FLOOR(R_IN) = even and */
76  // /* smaller for FLOOR(R_IN) = odd */
77  // /* For R_EVEN_ODD < 0 : just opposite treatment */
78  // /* ------------------------------------------------------------ */
79 
80  // /* ------------------------------------------------------------ */
81  // /* On input: R_ORIGIN nuclear charge (real number) */
82  // /* R_EVEN_ODD requested even-odd effect */
83  // /* Intermediate quantity: R_IN = R_ORIGIN + 0.5 */
84  // /* On output: I_OUT nuclear charge (integer) */
85  // /* ------------------------------------------------------------ */
86 
87  // G4double R_ORIGIN,R_IN,R_EVEN_ODD,R_REST,R_HELP;
88  G4double r_in = 0.0, r_rest = 0.0, r_help = 0.0;
89  G4double r_floor = 0.0;
90  G4double r_middle = 0.0;
91  // G4int I_OUT,N_FLOOR;
92  G4int n_floor = 0;
93 
94  r_in = r_origin + 0.5;
95  r_floor = (float)((int)(r_in));
96  if (r_even_odd < 0.001) {
97  i_out = (int)(r_floor);
98  }
99  else {
100  r_rest = r_in - r_floor;
101  r_middle = r_floor + 0.5;
102  n_floor = (int)(r_floor);
103  if (n_floor%2 == 0) {
104  // even before modif.
105  r_help = r_middle + (r_rest - 0.5) * (1.0 - r_even_odd);
106  }
107  else {
108  // odd before modification
109  r_help = r_middle + (r_rest - 0.5) * (1.0 + r_even_odd);
110  }
111  i_out = (int)(r_help);
112  }
113 }
int G4int
Definition: G4Types.hh:78
typedef int(XMLCALL *XML_NotStandaloneHandler)(void *userData)
double G4double
Definition: G4Types.hh:76

Here is the call graph for this function:

Here is the caller graph for this function:

G4double G4AblaFission::fissility ( G4int  a,
G4int  z,
G4int  optxfis 
)
void G4AblaFission::fissionDistri ( G4double a,
G4double z,
G4double e,
G4double a1,
G4double z1,
G4double e1,
G4double v1,
G4double a2,
G4double z2,
G4double e2,
G4double v2 
)

Definition at line 171 of file G4AblaFission.cc.

174 {
175  // // G4cout <<"Fission: a = " << a << " z = " << z << " e = " << e << G4endl;
176  // On input: A, Z, E (mass, atomic number and exc. energy of compound nucleus
177  // before fission)
178  // On output: Ai, Zi, Ei (mass, atomic number and exc. energy of fragment 1 and 2
179  // after fission)
180 
181  // Additionally calculated but not put in the parameter list:
182  // Kinetic energy of prefragments EkinR1, EkinR2
183 
184  // Translation of SIMFIS18.PLI (KHS, 2.1.2001)
185 
186  // This program calculates isotopic distributions of fission fragments
187  // with a semiempirical model
188  // Copy from SIMFIS3, KHS, 8. February 1995
189  // Modifications made by Jose Benlliure and KHS in August 1996
190  // Energy counted from lowest barrier (J. Benlliure, KHS 1997)
191  // Some bugs corrected (J. Benlliure, KHS 1997)
192  // Version used for thesis S. Steinhaueser (August 1997)
193  // (Curvature of LD potential increased by factor of 2!)
194 
195  // Weiter veraendert mit der Absicht, eine Version zu erhalten, die
196  // derjenigen entspricht, die von J. Benlliure et al.
197  // in Nucl. Phys. A 628 (1998) 458 verwendet wurde,
198  // allerdings ohne volle Neutronenabdampfung.
199 
200  // The excitation energy was calculate now for each fission channel
201  // separately. The dissipation from saddle to scission was taken from
202  // systematics, the deformation energy at scission considers the shell
203  // effects in a simplified way, and the fluctuation is included.
204  // KHS, April 1999
205 
206  // The width in N/Z was carefully adapted to values given by Lang et al.
207 
208  // The width and eventually a shift in N/Z (polarization) follows the
209  // following rules:
210 
211  // The line N/Z following UCD has an angle of std::atan(Zcn/Ncn)
212  // to the horizontal axis on a chart of nuclides.
213  // (For 238U the angle is 32.2 deg.)
214 
215  // The following relations hold: (from Armbruster)
216  //
217  // sigma(N) (A=const) = sigma(Z) (A=const)
218  // sigma(A) (N=const) = sigma(Z) (N=const)
219  // sigma(A) (Z=const) = sigma(N) (Z=const)
220  //
221  // From this we get:
222  // sigma(Z) (N=const) * N = sigma(N) (Z=const) * Z
223  // sigma(A) (Z=const) = sigma(Z) (A=const) * A/Z
224  // sigma(N) (Z=const) = sigma(Z) (A=const) * A/Z
225  // Z*sigma(N) (Z=const) = N*sigma(Z) (N=const) = A*sigma(Z) (A=const)
226 
227  // Excitation energy now calculated above the lowest potential point
228  // Inclusion of a distribution of excitation energies
229 
230  // Several modifications, starting from SIMFIS12: KHS November 2000
231  // This version seems to work quite well for 238U.
232  // The transition from symmetric to asymmetric fission around 226Th
233  // is reasonably well reproduced, although St. I is too strong and St. II
234  // is too weak. St. I and St. II are also weakly seen for 208Pb.
235 
236  // Extensions for an event generator of fission events (21.11.2000,KHS)
237 
238  // Defalt parameters (IPARS) rather carefully adjusted to
239  // pre-neutron mass distributions of Vives et al. (238U + n)
240  // Die Parameter Fgamma1 und Fgamma2 sind kleiner als die resultierenden
241  // Breiten der Massenverteilungen!!!
242  // Fgamma1 und Fgamma2 wurden angepa�, so da�
243  // Sigma-A(ST-I) = 3.3, Sigma-A(St-II) = 5.8 (nach Vives)
244 
245  // Parameters of the model carefully adjusted by KHS (2.2.2001) to
246  // 238U + 208Pb, 1000 A MeV, Timo Enqvist et al.
247 
248  G4double n = 0.0;
249  G4double aheavy1 = 0.0, aheavy2 = 0.0;
250  // G4double eheavy1 = 0.0, elight1 = 0.0, eheavy2 = 0.0, elight2 = 0.0;
251  G4double zheavy1_shell = 0.0, zheavy2_shell = 0.0;
252  G4double masscurv = 0.0;
253  G4double sasymm1 = 0.0, sasymm2 = 0.0, ssymm = 0.0, ysum = 0.0;
254  G4double ssymm_mode1 = 0.0, ssymm_mode2 = 0.0;
255  // Curvature at saddle, modified by ld-potential
256  G4double wzasymm1_saddle, wzasymm2_saddle, wzsymm_saddle = 0.0;
257  G4double wzasymm1_scission = 0.0, wzasymm2_scission = 0.0, wzsymm_scission = 0.0;
258  G4double wzasymm1 = 0.0, wzasymm2 = 0.0, wzsymm = 0.0;
259  G4int imode = 0;
260  G4double rmode = 0.0;
261  G4double z1mean = 0.0, z1width = 0.0;
262  // G4double Z1,Z2,N1R,N2R,A1R,A2R,N1,N2,A1,A2;
263  G4double n1r = 0.0, n2r = 0.0;
264 
265  G4double zsymm = 0.0, nsymm = 0.0, asymm = 0.0;
266  G4double n1mean = 0.0, n1width = 0.0;
267  // effective shell effect at lowest barrier
268  // Excitation energy with respect to ld barrier
269  G4double re1 = 0.0, re2 = 0.0, re3 = 0.0;
270  G4double n1ucd = 0.0, n2ucd = 0.0;
271 
272  // shift of most probable neutron number for given Z,
273  // according to polarization
274  G4int i_help = 0;
275 
276  // /* Parameters of the semiempirical fission model */
277  G4double a_levdens = 0.0;
278  // /* level-density parameter */
279  G4double a_levdens_heavy1 = 0.0, a_levdens_heavy2 = 0.0;
280  const G4double r_null = 1.16;
281  // /* radius parameter */
282  G4double epsilon_1_saddle = 0.0, epsilon0_1_saddle = 0.0;
283  G4double epsilon_2_saddle = 0.0, epsilon0_2_saddle = 0.0, epsilon_symm_saddle = 0.0;
284  G4double epsilon_1_scission = 0.0, epsilon0_1_scission = 0.0;
285  G4double epsilon_2_scission = 0.0, epsilon0_2_scission = 0.0;
286  G4double epsilon_symm_scission = 0.0;
287  // /* modified energy */
288  G4double e_eff1_saddle = 0.0, e_eff2_saddle = 0.0;
289  G4int icz = 0, k = 0;
290 
291  G4int i_inter = 0;
292  G4double ne_min = 0;
293  G4double ed1_low = 0.0, ed2_low = 0.0, ed1_high = 0.0, ed2_high = 0.0, ed1 = 0.0, ed2 = 0.0;
294  G4double atot = 0.0;
295 
296  // Input parameters:
297  //OMMENT(Nuclear charge number);
298  // G4double Z;
299  //OMMENT(Nuclear mass number);
300  // G4double A;
301  //OMMENT(Excitation energy above fission barrier);
302  // G4double E;
303 
304  // Model parameters:
305  //OMMENT(position of heavy peak valley 1);
306  const G4double nheavy1 = 82.0;
307  const G4double nheavy2 = 89.0;
308  //OMMENT(position of heavy peak valley 2);
309  const G4double e_crit = 5; // Critical pairing energy :::PK
310  //OMMENT(Shell effect for valley 1);
311  // Parameter (Delta_U2_shell = -3.2)
312  //OMMENT(I: used shell effect);
313  G4double delta_u1 = 0.0;
314  //omment(I: used shell effect);
315  G4double delta_u2 = 0.0;
316  const G4double delta_u1_shell = -2.5;
317  // Parameter (Delta_U1_shell = -2)
318  //OMMENT(Shell effect for valley 2);
319  const G4double delta_u2_shell = -5.5;
320  const G4double el = 30.0;
321  //OMMENT(Curvature of asymmetric valley 1);
322  const G4double cz_asymm1_shell = 0.7;
323  //OMMENT(Curvature of asymmetric valley 2);
324  const G4double cz_asymm2_shell = 0.08;
325  //OMMENT(Factor for width of distr. valley 1);
326  const G4double fwidth_asymm1 = 1.2;
327  //OMMENT(Factor for width of distr. valley 2);
328  const G4double fwidth_asymm2 = 1.0;
329  // Parameter (CZ_asymm2_scission = 0.12)
330  //OMMENT(Factor to gamma_heavy1);
331  const G4double fgamma1 = 1.0;
332  //OMMENT(I: fading of shells (general));
333  G4double gamma = 0.0;
334  //OMMENT(I: fading of shell 1);
335  G4double gamma_heavy1 = 0.0;
336  //OMMENT(I: fading of shell 2);
337  G4double gamma_heavy2 = 0.0;
338  //OMMENT(Zero-point energy at saddle);
339  const G4double e_zero_point = 0.5;
340  G4int i_eva = 0; // Calculate A = 1 or Aprime = 0 :::PK
341  //OMMENT(I: friction from saddle to scission);
342  G4double e_saddle_scission = 10.0;
343  //OMMENT(Friction factor);
344  const G4double friction_factor = 1.0;
345  //OMMENT(I: Internal counter for different modes); INIT(0,0,0)
346  // Integer*4 I_MODE(3)
347  //OMMENT(I: Yield of symmetric mode);
348  G4double ysymm = 0.0;
349  //OMMENT(I: Yield of asymmetric mode 1);
350  G4double yasymm1 = 0.0;
351  //OMMENT(I: Yield of asymmetric mode 2);
352  G4double yasymm2 = 0.0;
353  //OMMENT(I: Effective position of valley 1);
354  G4double nheavy1_eff = 0.0;
355  //OMMENT(I: position of heavy peak valley 1);
356  G4double zheavy1 = 0.0;
357  //omment(I: Effective position of valley 2);
358  G4double nheavy2_eff = 0.0;
359  //OMMENT(I: position of heavy peak valley 2);
360  G4double zheavy2 = 0.0;
361  //omment(I: Excitation energy above saddle 1);
362  G4double eexc1_saddle = 0.0;
363  //omment(I: Excitation energy above saddle 2);
364  G4double eexc2_saddle = 0.0;
365  //omment(I: Excitation energy above lowest saddle);
366  G4double eexc_max = 0.0;
367  //OMMENT(I: Even-odd effect in Z);
368  G4double r_e_o = 0.0;
369  G4double r_e_o_max = 0.0;
370  G4double e_pair = 0.0;
371  //OMMENT(I: Curveture of symmetric valley);
372  G4double cz_symm = 0.0;
373  //OMMENT(I: Curvature of mass distribution for fixed Z);
374  G4double cn = 0.0;
375  //OMMENT(=1: test output, =0: no test output);
376  const G4int itest = 0;
377  // G4double UMASS, ECOUL, reps1, reps2, rn1_pol;
378  G4double reps1 = 0.0, reps2 = 0.0, rn1_pol = 0.0;
379  // Float_t HAZ,GAUSSHAZ;
380  //G4int kkk = 0;
381  G4int kkk = 10;
382  G4double Bsym = 0.0;
383  G4double Basym_1 = 0.0;
384  G4double Basym_2 = 0.0;
385  // I_MODE = 0;
386  G4int count;
387  const G4int maxCount = 500;
388 
389  // /* average Z of asymmetric and symmetric components: */
390  n = a - z; /* neutron number of the fissioning nucleus */
391 
392  k = 0;
393  icz = 0;
394  if ( (std::pow(z,2)/a < 25.0) || (n < nheavy2) || (e > 500.0) ) {
395  icz = -1;
396  // GOTO 1002;
397  goto milledeux;
398  }
399 
400  // /* Polarisation assumed for standard I and standard II:
401  // Z - Zucd = cpol (for A = const);
402  // from this we get (see Armbruster)
403  // Z - Zucd = Acn/Ncn * cpol (for N = const) */
404 
405  // zheavy1_shell = ((nheavy1/n) * z) - ((a/n) * cpol1); // Simfis18 PK:::
406  zheavy1_shell = ((nheavy1/n) * z) - 0.8; // Simfis3 PK:::
407  //zheavy2_shell = ((nheavy2/n) * z) - ((a/n) * cpol2); // Simfis18 PK:::
408  zheavy2_shell = ((nheavy2/n) * z) - 0.8; // Simfis3 PK:::
409 
410  // p(zheavy1_shell, zheavy2_shell);
411 
412  // e_saddle_scission =
413  // (-24.0 + 0.02227 * (std::pow(z,2))/(std::pow(a,0.33333)) ) * friction_factor;
414  e_saddle_scission = (3.535 * std::pow(z,2)/a - 121.1) * friction_factor; // PK:::
415 
416  // /* Energy dissipated from saddle to scission */
417  // /* F. Rejmund et al., Nucl. Phys. A 678 (2000) 215, fig. 4 b */
418  // E_saddle_scission = DMAX1(0.,E_saddle_scission);
419  // Heavy Ion Induced Reactions, Schroeder W. ed., Harwood, 1986, 101
420  if (e_saddle_scission < 0.0) {
421  e_saddle_scission = 0.0;
422  }
423 
424  // /* Semiempirical fission model: */
425 
426  // /* Fit to experimental result on curvature of potential at saddle */
427  // /* reference: */
428  // /* IF Z**2/A < 33.15E0 THEN
429  // MassCurv = 30.5438538E0 - 4.00212049E0 * Z**2/A
430  // + 0.11983384E0 * Z**4 / (A**2) ;
431  // ELSE
432  // MassCurv = 10.E0 ** (7.16993332E0 - 0.26602401E0 * Z**2/A
433  // + 0.00283802E0 * Z**4 / (A**2)) ; */
434  // /* New parametrization of T. Enqvist according to Mulgin et al. 1998 NPA 640(1998) 375 */
435  if ( (std::pow(z,2))/a < 33.9186) {
436  masscurv = std::pow( 10.0,(-1.093364 + 0.082933 * (std::pow(z,2)/a)
437  - 0.0002602 * (std::pow(z,4)/std::pow(a,2))) );
438  } else {
439  masscurv = std::pow( 10.0,(3.053536 - 0.056477 * (std::pow(z,2)/a)
440  + 0.0002454 * (std::pow(z,4)/std::pow(a,2))) );
441  }
442 
443  cz_symm = (8.0/std::pow(z,2)) * masscurv;
444 
445  if(itest == 1) {
446  // // G4cout << "cz_symmetry= " << cz_symm << G4endl;
447  }
448 
449  icz = 0;
450  if (cz_symm < 0) {
451  icz = -1;
452  // GOTO 1002;
453  goto milledeux;
454  }
455 
456  // /* proton number in symmetric fission (centre) */
457  zsymm = z/2.0;
458  nsymm = n/2.0;
459  asymm = nsymm + zsymm;
460 
461  zheavy1 = (cz_symm*zsymm + cz_asymm1_shell*zheavy1_shell)/(cz_symm + cz_asymm1_shell);
462  zheavy2 = (cz_symm*zsymm + cz_asymm2_shell*zheavy2_shell)/(cz_symm + cz_asymm2_shell);
463 
464  // /* position of valley due to influence of liquid-drop potential */
465  nheavy1_eff = (zheavy1 + 0.8)*(n/z);
466  nheavy2_eff = (zheavy2 + 0.8)*(n/z);
467  aheavy1 = nheavy1_eff + zheavy1;
468  aheavy2 = nheavy2_eff + zheavy2;
469  // Eheavy1 = E * Aheavy1 / A
470  // Eheavy2 = E * Aheavy2 / A
471  // Elight1 = E * Alight1 / A
472  // Elight2 = E * Alight2 / A
473  a_levdens = a / 8.0;
474  a_levdens_heavy1 = aheavy1 / 8.0;
475  a_levdens_heavy2 = aheavy2 / 8.0;
476  gamma = a_levdens / (0.4 * (std::pow(a,1.3333)) );
477  gamma_heavy1 = ( a_levdens_heavy1 / (0.4 * (std::pow(aheavy1,1.3333)) ) ) * fgamma1;
478  gamma_heavy2 = a_levdens_heavy2 / (0.4 * (std::pow(aheavy2,1.3333)) );
479 
480  // Up to here: Ok! Checked CS 10/10/05
481 
482  cn = umass(zsymm,(nsymm+1.),0.0) + umass(zsymm,(nsymm-1.),0.0)
483  + 1.44 * (std::pow(zsymm,2))/
484  ( (std::pow(r_null,2)) *
485  ( std::pow((asymm+1.0),1.0/3.0) + std::pow((asymm-1.0),1.0/3.0) ) *
486  ( std::pow((asymm+1.0),1.0/3.0) + std::pow((asymm-1.0),1.0/3.0) ) )
487  - 2.0 * umass(zsymm,nsymm,0.0)
488  - 1.44 * (std::pow(zsymm,2))/
489  ( ( 2.0 * r_null * (std::pow(asymm,1.0/3.0)) ) *
490  ( 2.0 * r_null * (std::pow(asymm,1.0/3.0)) ) );
491 
492  // /* shell effect in valley of mode 1 */
493  delta_u1 = delta_u1_shell + (std::pow((zheavy1_shell-zheavy1),2))*cz_asymm1_shell;
494  // /* shell effect in valley of mode 2 */
495  delta_u2 = delta_u2_shell + (std::pow((zheavy2_shell-zheavy2),2))*cz_asymm2_shell;
496 
497  Bsym = 0.0;
498  Basym_1 = Bsym + std::pow((zheavy1-zsymm), 2) * cz_symm + delta_u1;
499  Basym_2 = Bsym + std::pow((zheavy2-zsymm), 2) * cz_symm + delta_u2;
500  if(Bsym < Basym_1 && Bsym < Basym_2) {
501  // Excitation energies at the saddle point
502  // without and with shell effect
503  epsilon0_1_saddle = (e + e_zero_point - std::pow((zheavy1 - zsymm), 2) * cz_symm);
504  epsilon0_2_saddle = (e + e_zero_point - std::pow((zheavy2 - zsymm), 2) * cz_symm);
505 
506  epsilon_1_saddle = epsilon0_1_saddle - delta_u1;
507  epsilon_2_saddle = epsilon0_2_saddle - delta_u2;
508 
509  epsilon_symm_saddle = e + e_zero_point;
510  eexc1_saddle = epsilon_1_saddle;
511  eexc2_saddle = epsilon_2_saddle;
512 
513  // Excitation energies at the scission point
514  // heavy fragment without and with shell effect
515  epsilon0_1_scission = (e + e_saddle_scission - std::pow((zheavy1 - zsymm), 2) * cz_symm) * aheavy1/a;
516  epsilon_1_scission = epsilon0_1_scission - delta_u1*(aheavy1/a);
517 
518  epsilon0_2_scission = (e + e_saddle_scission - std::pow((zheavy2 - zsymm), 2) * cz_symm) * aheavy2/a;
519  epsilon_2_scission = epsilon0_2_scission - delta_u2*(aheavy2/a);
520 
521  epsilon_symm_scission = e + e_saddle_scission;
522  } else if (Basym_1 < Bsym && Basym_1 < Basym_2) {
523  // Excitation energies at the saddle point
524  // without and with shell effect
525  epsilon_symm_saddle = (e + e_zero_point + delta_u1 + std::pow((zheavy1-zsymm), 2) * cz_symm);
526  epsilon0_2_saddle = (epsilon_symm_saddle - std::pow((zheavy2-zsymm), 2) * cz_symm);
527  epsilon_2_saddle = epsilon0_2_saddle - delta_u2;
528  epsilon0_1_saddle = e + e_zero_point + delta_u1;
529  epsilon_1_saddle = e + e_zero_point;
530  eexc1_saddle = epsilon_1_saddle;
531  eexc2_saddle = epsilon_2_saddle;
532 
533  // Excitation energies at the scission point
534  // heavy fragment without and with shell effect
535  epsilon_symm_scission = (e + e_saddle_scission + std::pow((zheavy1-zsymm), 2) * cz_symm + delta_u1);
536  epsilon0_2_scission = (epsilon_symm_scission - std::pow((zheavy2-zsymm), 2) * cz_symm) * aheavy2/a;
537  epsilon_2_scission = epsilon0_2_scission - delta_u2*aheavy2/a;
538  epsilon0_1_scission = (e + e_saddle_scission + delta_u1) * aheavy1/a;
539  epsilon_1_scission = (e + e_saddle_scission) * aheavy1/a;
540  } else if (Basym_2 < Bsym && Basym_2 < Basym_1) {
541  // Excitation energies at the saddle point
542  // without and with shell effect
543  epsilon_symm_saddle = (e + e_zero_point + delta_u2 + std::pow((zheavy2-zsymm), 2) * cz_symm);
544  epsilon0_1_saddle = (epsilon_symm_saddle - std::pow((zheavy1-zsymm), 2) * cz_symm);
545  epsilon_1_saddle = epsilon0_1_saddle - delta_u1;
546  epsilon0_2_saddle = e + e_zero_point + delta_u2;
547  epsilon_2_saddle = e + e_zero_point;
548  eexc1_saddle = epsilon_1_saddle;
549  eexc2_saddle = epsilon_2_saddle;
550 
551  // Excitation energies at the scission point
552  // heavy fragment without and with shell effect
553  epsilon_symm_scission = (e + e_saddle_scission + std::pow((zheavy2-zsymm), 2) * cz_symm + delta_u2);
554  epsilon0_1_scission = (epsilon_symm_scission - std::pow((zheavy1-zsymm), 2) * cz_symm) * aheavy1/a;
555  epsilon_1_scission = epsilon0_1_scission - delta_u1*aheavy1/a;
556  epsilon0_2_scission = (e + e_saddle_scission + delta_u2) * aheavy2/a;
557  epsilon_2_scission = (e + e_saddle_scission) * aheavy2/a;
558 
559  } else {
560  // G4cout <<"G4AblaFission: " << G4endl;
561  }
562  if(epsilon_1_saddle < 0.0) epsilon_1_saddle = 0.0;
563  if(epsilon_2_saddle < 0.0) epsilon_2_saddle = 0.0;
564  if(epsilon0_1_saddle < 0.0) epsilon0_1_saddle = 0.0;
565  if(epsilon0_2_saddle < 0.0) epsilon0_2_saddle = 0.0;
566  if(epsilon_symm_saddle < 0.0) epsilon_symm_saddle = 0.0;
567 
568  if(epsilon_1_scission < 0.0) epsilon_1_scission = 0.0;
569  if(epsilon_2_scission < 0.0) epsilon_2_scission = 0.0;
570  if(epsilon0_1_scission < 0.0) epsilon0_1_scission = 0.0;
571  if(epsilon0_2_scission < 0.0) epsilon0_2_scission = 0.0;
572  if(epsilon_symm_scission < 0.0) epsilon_symm_scission = 0.0;
573 
574  if(itest == 1) {
575  // G4cout <<"E, E1, E2, Es" << e << epsilon_1_saddle << epsilon_2_saddle << epsilon_symm_saddle << G4endl;
576  }
577 
578  e_eff1_saddle = epsilon0_1_saddle - delta_u1 * (std::exp((-epsilon_1_saddle*gamma)));
579 
580  if (e_eff1_saddle > 0.0) {
581  wzasymm1_saddle = std::sqrt( (0.5) *
582  (std::sqrt(1.0/a_levdens*e_eff1_saddle)) /
583  (cz_asymm1_shell * std::exp((-epsilon_1_saddle*gamma)) + cz_symm) );
584  } else {
585  wzasymm1_saddle = 1.0;
586  }
587 
588  e_eff2_saddle = epsilon0_2_saddle - delta_u2 * std::exp((-epsilon_2_saddle*gamma));
589  if (e_eff2_saddle > 0.0) {
590  wzasymm2_saddle = std::sqrt( (0.5 *
591  (std::sqrt(1.0/a_levdens*e_eff2_saddle)) /
592  (cz_asymm2_shell * std::exp((-epsilon_2_saddle*gamma)) + cz_symm) ) );
593  } else {
594  wzasymm2_saddle = 1.0;
595  }
596 
597  if(e - e_zero_point > 0.0) {
598  wzsymm_saddle = std::sqrt( (0.5 *
599  (std::sqrt(1.0/a_levdens*(e+epsilon_symm_saddle))) / cz_symm ) );
600  } else {
601  wzsymm_saddle = 1.0;
602  }
603 
604 // if (itest == 1) {
605 // // G4cout << "wz1(saddle) = " << wzasymm1_saddle << G4endl;
606 // // G4cout << "wz2(saddle) = " << wzasymm2_saddle << G4endl;
607 // // G4cout << "wzsymm(saddle) = " << wzsymm_saddle << G4endl;
608 // }
609 
610  // /* Calculate widhts at the scission point: */
611  // /* fits of ref. Beizin 1991 (Plots brought to GSI by Sergei Zhdanov) */
612 
613  wzsymm_scission = wzsymm_saddle;
614 
615  if (e_saddle_scission == 0.0) {
616  wzasymm1_scission = wzasymm1_saddle;
617  wzasymm2_scission = wzasymm2_saddle;
618  } else {
619  if (nheavy1_eff > 75.0) {
620  wzasymm1_scission = (std::sqrt(21.0)) * z/a;
621  double RR = (70.0-28.0)/3.0*(z*z/a-35.0)+28.0;
622  if(RR > 0.0) {
623  wzasymm2_scission = std::sqrt(RR)*(z/a);
624  } else {
625  wzasymm2_scission = 0.0;
626  }
627  } else {
628  wzasymm1_scission = wzasymm1_saddle;
629  wzasymm2_scission = wzasymm2_saddle;
630  }
631  }
632 
633  wzasymm1_scission = max(wzasymm1_scission,wzasymm1_saddle);
634  wzasymm2_scission = max(wzasymm2_scission,wzasymm2_saddle);
635 
636  wzasymm1 = wzasymm1_scission * fwidth_asymm1;
637  wzasymm2 = wzasymm2_scission * fwidth_asymm2;
638  wzsymm = wzsymm_scission;
639 
640 // /* if (ITEST == 1) {
641 // // G4cout << "WZ1(scission) = " << WZasymm1_scission << G4endl;
642 // // G4cout << "WZ2(scission) = " << WZasymm2_scission << G4endl;
643 // // G4cout << "WZsymm(scission) = " << WZsymm_scission << G4endl;
644 // }
645 // if (ITEST == 1) {
646 // // G4cout << "WZ1(scission) final= " << WZasymm1 << G4endl;
647 // // G4cout << "WZ2(scission) final= " << WZasymm2 << G4endl;
648 // // G4cout << "WZsymm(scission) final= " << WZsymm << G4endl;
649 // } */
650 
651 
652  // // G4cout <<"al, e, es, cn " << a_levdens << e << e_saddle_scission << cn << G4endl;
653 
654  // if (itest == 1) {
655  // // G4cout << "wasymm = " << wzsymm << G4endl;
656  // // G4cout << "waheavy1 = " << waheavy1 << G4endl;
657  // // G4cout << "waheavy2 = " << waheavy2 << G4endl;
658  // }
659 
660  // sig_0 = quantum fluctuation = 0.45 z units for A=cte
661  // 0.45*2.58 = 1.16 n units for Z=cte
662  // sig_0^2 = 1.16*2 = 1.35 n units for Z=cte
663  n1width = std::sqrt(0.5 * std::sqrt(1.0/a_levdens*(e + e_saddle_scission)) / cn + 1.35);
664  if ( (epsilon0_1_saddle - delta_u1*std::exp((-epsilon_1_saddle*gamma_heavy1))) < 0.0) {
665  sasymm1 = -10.0;
666  } else {
667  sasymm1 = 2.0 * std::sqrt( a_levdens * (epsilon0_1_saddle -
668  delta_u1*(std::exp((-epsilon_1_saddle*gamma_heavy1))) ) );
669  }
670 
671  if ( (epsilon0_2_saddle - delta_u2*std::exp((-epsilon_2_saddle*gamma_heavy2))) < 0.0) {
672  sasymm2 = -10.0;
673  } else {
674  sasymm2 = 2.0 * std::sqrt( a_levdens * (epsilon0_2_saddle -
675  delta_u2*(std::exp((-epsilon_2_saddle*gamma_heavy2))) ) );
676  }
677 
678  if (epsilon_symm_saddle > 0.0) {
679  ssymm = 2.0 * std::sqrt( a_levdens*(epsilon_symm_saddle) );
680  } else {
681  ssymm = -10.0;
682  }
683 
684  if (ssymm > -10.0) {
685  ysymm = 1.0;
686  if (epsilon0_1_saddle < 0.0) { // /* low energy */
687  yasymm1 = std::exp((sasymm1-ssymm)) * wzasymm1_saddle / wzsymm_saddle * 2.0;
688  // /* factor of 2 for symmetry classes */
689  } else { // /* high energy */
690  ssymm_mode1 = 2.0 * std::sqrt( a_levdens*(epsilon0_1_saddle) );
691  yasymm1 = ( std::exp((sasymm1-ssymm)) - std::exp((ssymm_mode1 - ssymm)) )
692  * wzasymm1_saddle / wzsymm_saddle * 2.0;
693  }
694 
695  if (epsilon0_2_saddle < 0.0) { // /* low energy */
696  yasymm2 = std::exp((sasymm2-ssymm)) * wzasymm2_saddle / wzsymm_saddle * 2.0;
697  // /* factor of 2 for symmetry classes */
698  } else { // /* high energy */
699  ssymm_mode2 = 2.0 * std::sqrt( a_levdens*(epsilon0_2_saddle) );
700  yasymm2 = ( std::exp((sasymm2-ssymm)) - std::exp((ssymm_mode2 - ssymm)) )
701  * wzasymm2_saddle / wzsymm_saddle * 2.0;
702  }
703  // /* difference in the exponent in order */
704  // /* to avoid numerical overflow */
705  }
706  else {
707  if ( (sasymm1 > -10.0) && (sasymm2 > -10.0) ) {
708  ysymm = 0.0;
709  yasymm1 = std::exp(sasymm1) * wzasymm1_saddle * 2.0;
710  yasymm2 = std::exp(sasymm2) * wzasymm2_saddle * 2.0;
711  }
712  }
713 
714  // /* normalize */
715  ysum = ysymm + yasymm1 + yasymm2;
716  if (ysum > 0.0) {
717  ysymm = ysymm / ysum;
718  yasymm1 = yasymm1 / ysum;
719  yasymm2 = yasymm2 / ysum;
720  } else {
721  ysymm = 0.0;
722  yasymm1 = 0.0;
723  yasymm2 = 0.0;
724  // /* search minimum threshold and attribute all events to this mode */
725  if ( (epsilon_symm_saddle < epsilon_1_saddle) && (epsilon_symm_saddle < epsilon_2_saddle) ) {
726  ysymm = 1.0;
727  } else {
728  if (epsilon_1_saddle < epsilon_2_saddle) {
729  yasymm1 = 1.0;
730  } else {
731  yasymm2 = 1.0;
732  }
733  }
734  }
735 
736 // if (itest == 1) {
737 // // G4cout << "ysymm normalized= " << ysymm << G4endl;
738 // // G4cout << "yasymm1 normalized= " << yasymm1 << G4endl;
739 // // G4cout << "yasymm2 normalized= " << yasymm2 << G4endl;
740 // }
741 
742  // /* even-odd effect */
743  // /* simple parametrization KHS, Nov. 2000. From Rejmund et al. */
744  eexc_max = max(eexc1_saddle, eexc2_saddle);
745  eexc_max = max(eexc_max, e);
746  // // G4cout << "mod(z, 2)" << iz%2 << G4endl;
747  if ((G4int)(z) % 2 == 0) {
748  r_e_o_max = 0.3 * (1.0 - 0.2 * (std::pow(z, 2)/a - std::pow(92.0, 2)/238.0));
749  e_pair = 2.0 * 12.0 / std::sqrt(a);
750  if(eexc_max > (e_crit + e_pair)) {
751  r_e_o = 0.0;
752  } else {
753  if(eexc_max < e_pair) {
754  r_e_o = r_e_o_max;
755  } else {
756  r_e_o = std::pow((eexc_max - e_crit - e_pair)/e_crit, 2) * r_e_o_max;
757  }
758  }
759  } else {
760  r_e_o = 0.0;
761  }
762 
763  // // G4cout <<"rmax " << r_e_o_max << G4endl;
764  // if(r_e_o > 0.0) // G4cout <<"e_crit, r_e_o" << e_crit << r_e_o << G4endl;
765  // $LOOP; /* event loop */
766  // I_COUNT = I_COUNT + 1;
767 
768  /* random decision: symmetric or asymmetric */
769  /* IMODE = 3 means asymmetric fission, mode 1,
770  IMODE = 2 means asymmetric fission, mode 2,
771  IMODE = 1 means symmetric */
772  // RMODE = dble(HAZ(k));
773  // rmode = rnd.rndm();
774 // // Safety check added to make sure we always select well defined
775 // // fission mode.
776  rmode = haz(k);
777  // Cast for test CS 11/10/05
778  // RMODE = 0.54;
779  // rmode = 0.54;
780  if (rmode < ysymm) {
781  imode = 1;
782  } else if (rmode < (ysymm + yasymm1)) {
783  imode = 2;
784  } else {
785  imode = 3;
786  }
787  // /* determine parameters of the Z distribution */
788  // force imode (for testing, PK)
789  // imode = 3;
790 
791  if (imode == 1) {
792  z1mean = zsymm;
793  z1width = wzsymm;
794  } else if (imode == 2) {
795  z1mean = zheavy1;
796  z1width = wzasymm1;
797  } else if (imode == 3) {
798  z1mean = zheavy2;
799  z1width = wzasymm2;
800  }
801 
802  if (itest == 1) {
803  // G4cout << "nbre aleatoire tire " << rmode << G4endl;
804  // G4cout << "fission mode " << imode << G4endl;
805  // G4cout << "z1mean= " << z1mean << G4endl;
806  // G4cout << "z1width= " << z1width << G4endl;
807  }
808 
809  // /* random decision: Z1 and Z2 at scission: */
810  z1 = 1.0;
811  z2 = 1.0;
812 
813  count = 0;
814  while ( (z1<5.0) || (z2<5.0) ) { /* Loop checking, 28.10.2015, D.Mancusi */
815  // Z1 = dble(GAUSSHAZ(K,sngl(Z1mean),sngl(Z1width)));
816  // z1 = rnd.gaus(z1mean,z1width);
817  // z1 = 48.26; // gausshaz(k, z1mean, z1width);
818  z1 = gausshaz(k, z1mean, z1width);
819  even_odd(z1, r_e_o, i_help);
820  z1 = double(i_help);
821  z2 = z - z1;
822  if(++count>maxCount)
823  break;
824  }
825 
826  if (itest == 1) {
827  // G4cout << "ff charge sample " << G4endl;
828  // G4cout << "z1 = " << z1 << G4endl;
829  // G4cout << "z2 = " << z2 << G4endl;
830  }
831 
832 // // CALL EVEN_ODD(Z1,R_E_O,I_HELP);
833 // // /* Integer proton number with even-odd effect */
834 // // Z1 = REAL(I_HELP)
835 // // /* Z1 = INT(Z1+0.5E0); */
836 // z2 = z - z1;
837 
838  // /* average N of both fragments: */
839  if (imode == 1) {
840  n1ucd = z1 * n/z;
841  n2ucd = z2 * n/z;
842  re1 = umass(z1,n1ucd,0.6) + umass(z2,n2ucd,0.6) + ecoul(z1,n1ucd,0.6,z2,n2ucd,0.6,2.0); // umass == massdef
843  re2 = umass(z1,n1ucd+1.,0.6) + umass(z2,n2ucd-1.,0.6) + ecoul(z1,n1ucd+1.,0.6,z2,n2ucd-1.,0.6,2.0);
844  re3 = umass(z1,n1ucd+2.,0.6) + umass(z2,n2ucd-2.,0.6) + ecoul(z1,n1ucd+2.,0.6,z2,n2ucd-2.,0.6,2.0);
845  reps2 = (re1-2.0*re2+re3) / 2.0;
846  reps1 = re2 - re1 - reps2;
847  rn1_pol = - reps1 / (2.0 * reps2);
848  n1mean = n1ucd + rn1_pol;
849  } else {
850  n1mean = (z1 + 0.5) * n/z;
851  }
852 
853 // n1mean nsymm + (z1 - zsymm) * 1.6 from 238 U(nth, f)
854 // n1width = 0.9 + E * 0.002 KHS
855 
856 // random decision: N1R and N2R at scission, before evaporation
857  n1r = 1.0;
858  n2r = 1.0;
859  count = 0;
860  while (n1r < 5 || n2r < 5) { /* Loop checking, 28.10.2015, D.Mancusi */
861  // n1r = 76.93; gausshaz(kkk,n1mean,n1width);
862  n1r = gausshaz(kkk,n1mean,n1width);
863  // modification to have n1r as integer, and n=n1r+n2r rigorously a.b. 19/4/2001
864  i_inter = int(n1r + 0.5);
865  n1r = double(i_inter);
866  n2r = n - n1r;
867  if(++count>maxCount)
868  break;
869  }
870 
871  // neutron evaporation from fragments
872  if (i_eva > 0) {
873  // treatment sz
874  ne_min = 0.095e0 * a - 20.4e0;
875  if (ne_min < 0) ne_min = 0.0;
876  ne_min = ne_min + e / 8.e0; // 1 neutron per 8 mev */
877  }
878 
879  // excitation energy due to deformation
880 
881  a1 = z1 + n1r; // mass of first fragment */
882  a2 = z2 + n2r; // mass of second fragment */
883  if (a1 < 80) {
884  ed1_low = 0.0;
885  } else if (a1 >= 80 && a1 < 110) {
886  ed1_low = (a1-80.)*20./30.;
887  } else if (a1 >= 110 && a1 < 130) {
888  ed1_low = -(a1-110.)*20./20. + 20.;
889  } else if (a1 >= 130) {
890  ed1_low = (a1-130.)*20./30.;
891  }
892 
893  if (a2 < 80) {
894  ed2_low = 0.0;
895  } else if (a2 >= 80 && a2 < 110) {
896  ed2_low = (a2-80.)*20./30.;
897  } else if (a2 >= 110 && a2 < 130) {
898  ed2_low = -(a2-110.)*20./20. + 20.;
899  } else if (a2 >= 130) {
900  ed2_low = (a2-130.)*20./30.;
901  }
902 
903  ed1_high = 20.0*a1/(a1+a2);
904  ed2_high = 20.0 - ed1_high;
905  ed1 = ed1_low*std::exp(-e/el) + ed1_high*(1-std::exp(-e/el));
906  ed2 = ed2_low*std::exp(-e/el) + ed2_high*(1-std::exp(-e/el));
907 
908  // write(6,101)e,a1,a2,ed1,ed2,ed1+ed2
909  // write(6,102)ed1_low,ed1_high,ed2_low,ed2_high
910  e1 = e*a1/(a1+a2) + ed1;
911  e2 = e - e*a1/(a1+a2) + ed2;
912  atot = a1+a2;
913  if (atot > a+1) {
914  // write(6,*)'a,,a1,a2,atot',a,a1,a2,atot
915  // write(6,*)'n,n1r,n2r',n,n1r,n2r
916  // write(6,*)'z,z1,z2',z,z1,z2
917  }
918 
919  milledeux:
920  // only symmetric fission
921  // Symmetric fission: Ok! Checked CS 10/10/05
922  if ( (icz == -1) || (a1 < 0.0) || (a2 < 0.0) ) {
923  // IF (z.eq.92) THEN
924  // write(6,*)'symmetric fission'
925  // write(6,*)'Z,A,E,A1,A2,icz,Atot',Z,A,E,A1,A2,icz,Atot
926  // END IF
927 
928  if (itest == 1) {
929  // G4cout << "milledeux: liquid-drop option " << G4endl;
930  }
931 
932  n = a-z;
933  // proton number in symmetric fission (centre) *
934  zsymm = z / 2.0;
935  nsymm = n / 2.0;
936  asymm = nsymm + zsymm;
937 
938  a_levdens = a / 8.0;
939 
940  masscurv = 2.0;
941  cz_symm = 8.0 / std::pow(z,2) * masscurv;
942 
943  wzsymm = std::sqrt( (0.5 * std::sqrt(1.0/a_levdens*e) / cz_symm) ) ;
944 
945  if (itest == 1) {
946  // G4cout << " symmetric high energy fission " << G4endl;
947  // G4cout << "wzsymm " << wzsymm << G4endl;
948  }
949 
950  z1mean = zsymm;
951  z1width = wzsymm;
952 
953  // random decision: Z1 and Z2 at scission: */
954  z1 = 1.0;
955  z2 = 1.0;
956  count = 0;
957  while ( (z1 < 5.0) || (z2 < 5.0) ) { /* Loop checking, 28.10.2015, D.Mancusi */
958  // z1 = dble(gausshaz(kkk,sngl(z1mean),sngl(z1width)));
959  // z1 = rnd.gaus(z1mean,z1width);
960  // z1 = 24.8205585; //gausshaz(kkk, z1mean, z1width);
961  z1 = gausshaz(kkk, z1mean, z1width);
962  z2 = z - z1;
963  if(++count>maxCount)
964  break;
965  }
966 
967  if (itest == 1) {
968  // G4cout << " z1 " << z1 << G4endl;
969  // G4cout << " z2 " << z2 << G4endl;
970  }
971  if (itest == 1) {
972  // G4cout << " zsymm " << zsymm << G4endl;
973  // G4cout << " nsymm " << nsymm << G4endl;
974  // G4cout << " asymm " << asymm << G4endl;
975  }
976 
977  cn = umass(zsymm, nsymm+1.0, 0.0) + umass(zsymm, nsymm-1.0, 0.0)
978  + 1.44 * std::pow(zsymm, 2)/
979  (std::pow(r_null, 2) * std::pow(std::pow(asymm+1.0, 1.0/3.0) + std::pow(asymm-1.0, 1.0/3.0), 2))
980  - 2.0 * umass(zsymm, nsymm, 0.0) - 1.44 * std::pow(zsymm, 2) /
981  std::pow(r_null * 2.0 *std::pow(asymm, 1.0/3.0), 2);
982  // This is an approximation! Coulomb energy is neglected.
983 
984  n1width = std::sqrt( (0.5 * std::sqrt(1.0/a_levdens*e) / cn) + 1.35);
985  if (itest == 1) {
986  // G4cout << " cn " << cn << G4endl;
987  // G4cout << " n1width " << n1width << G4endl;
988  }
989 
990  // /* average N of both fragments: */
991  n1ucd = z1 * n/z;
992  n2ucd = z2 * n/z;
993  re1 = umass(z1,n1ucd, 0.6) + umass(z2,n2ucd, 0.6) + ecoul(z1,n1ucd, 0.6,z2,n2ucd, 0.6,2.0);
994  re2 = umass(z1,n1ucd+1.,0.6) + umass(z2,n2ucd-1.,0.6) + ecoul(z1,n1ucd+1.,0.6,z2,n2ucd-1.,0.6,2.0);
995  re3 = umass(z1,n1ucd+2.,0.6) + umass(z2,n2ucd-2.,0.6) + ecoul(z1,n1ucd+2.,0.6,z2,n2ucd-2.,0.6,2.0);
996  reps2 = (re1-2.0*re2+re3) / 2.0;
997  reps1 = re2 - re1 - reps2;
998  rn1_pol = - reps1 / (2.0 * reps2);
999  n1mean = n1ucd + rn1_pol;
1000 
1001  // random decision: N1R and N2R at scission, before evaporation: */
1002  // N1R = dfloat(NINT(GAUSSHAZ(KKK,sngl(N1mean),sngl(N1width))));
1003  // n1r = (float)( (int)(rnd.gaus(n1mean,n1width)) );
1004  // n1r = 34.0; //(float)( (int)(gausshaz(k, n1mean,n1width)) );
1005  n1r = (float)( (int)(gausshaz(k, n1mean,n1width)) );
1006  n2r = n - n1r;
1007  // Mass of first and second fragment */
1008  a1 = z1 + n1r;
1009  a2 = z2 + n2r;
1010 
1011  e1 = e*a1/(a1+a2);
1012  e2 = e - e*a1/(a1+a2);
1013  }
1014  v1 = 0.0; // These are not calculated in SimFis3.
1015  v2 = 0.0;
1016  if (itest == 1) {
1017  // G4cout << " n1r " << n1r << G4endl;
1018  // G4cout << " n2r " << n2r << G4endl;
1019  }
1020 
1021  if (itest == 1) {
1022  // G4cout << " a1 " << a1 << G4endl;
1023  // G4cout << " z1 " << z1 << G4endl;
1024  // G4cout << " a2 " << a2 << G4endl;
1025  // G4cout << " z2 " << z2 << G4endl;
1026  // G4cout << " e1 " << e1 << G4endl;
1027  // G4cout << " e2 " << e << G4endl;
1028  }
1029 }
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
int G4int
Definition: G4Types.hh:78
G4double umass(G4double z, G4double n, G4double beta)
G4int max(G4int a, G4int b)
typedef int(XMLCALL *XML_NotStandaloneHandler)(void *userData)
G4double gausshaz(int k, double xmoy, double sig)
const G4int n
G4double ecoul(G4double z1, G4double n1, G4double beta1, G4double z2, G4double n2, G4double beta2, G4double d)
void even_odd(G4double r_origin, G4double r_even_odd, G4int &i_out)
G4double haz(G4int k)
tuple z
Definition: test.py:28
double G4double
Definition: G4Types.hh:76

Here is the call graph for this function:

Here is the caller graph for this function:

G4double G4AblaFission::gausshaz ( int  k,
double  xmoy,
double  sig 
)

Definition at line 1086 of file G4AblaFission.cc.

1087 {
1088  // Gaussian random numbers:
1089 
1090  // 1005 C*** TIRAGE ALEATOIRE DANS UNE GAUSSIENNE DE LARGEUR SIG ET MOYENNE XMOY
1091  static G4ThreadLocal G4int iset = 0;
1092  static G4ThreadLocal G4double v1,v2,r,fac,gset,fgausshaz;
1093 
1094  if(iset == 0) { //then
1095  G4int count = 0, maxCount = 500;
1096  do {
1097  v1 = 2.0*haz(k) - 1.0;
1098  v2 = 2.0*haz(k) - 1.0;
1099  r = std::pow(v1,2) + std::pow(v2,2);
1100  if(++count>maxCount)
1101  break;
1102  } while(r >= 1); /* Loop checking, 28.10.2015, D.Mancusi */
1103 
1104  fac = std::sqrt(-2.*std::log(r)/r);
1105  gset = v1*fac;
1106  fgausshaz = v2*fac*sig+xmoy;
1107  iset = 1;
1108  }
1109  else {
1110  fgausshaz=gset*sig+xmoy;
1111  iset=0;
1112  }
1113  return fgausshaz;
1114 }
#define G4ThreadLocal
Definition: tls.hh:89
int G4int
Definition: G4Types.hh:78
G4double haz(G4int k)
static const G4double fac
double G4double
Definition: G4Types.hh:76

Here is the call graph for this function:

Here is the caller graph for this function:

G4double G4AblaFission::haz ( G4int  k)

Definition at line 1031 of file G4AblaFission.cc.

1032 {
1033  const G4int pSize = 110;
1034  static G4ThreadLocal G4double p[pSize];
1035  static G4ThreadLocal G4long ix = 0, i = 0;
1036  static G4ThreadLocal G4double x = 0.0, y = 0.0, a = 0.0, fhaz = 0.0;
1037  // k =< -1 on initialise
1038  // k = -1 c'est reproductible
1039  // k < -1 || k > -1 ce n'est pas reproductible
1040 
1041  // Zero is invalid random seed. Set proper value from our random seed collection:
1042  if(ix == 0) {
1043  // ix = hazard->ial;
1044  }
1045 
1046  if (k <= -1) { //then
1047  if(k == -1) { //then
1048  ix = 0;
1049  }
1050  else {
1051  x = 0.0;
1052  y = secnds(int(x));
1053  ix = int(y * 100 + 43543000);
1054  if(mod(ix,2) == 0) {
1055  ix = ix + 1;
1056  }
1057  }
1058 
1059  // Here we are using random number generator copied from INCL code
1060  // instead of the CERNLIB one! This causes difficulties for
1061  // automatic testing since the random number generators, and thus
1062  // the behavior of the routines in C++ and FORTRAN versions is no
1063  // longer exactly the same!
1064  x = G4AblaRandom::flat();
1065  // standardRandom(&x, &ix);
1066  for(G4int iRandom = 0; iRandom < pSize; iRandom++) { //do i=1,110
1067  p[iRandom] = G4AblaRandom::flat();
1068  // standardRandom(&(p[i]), &ix);
1069  }
1070  a = G4AblaRandom::flat();
1071  //standardRandom(&a, &ix);
1072  k = 0;
1073  }
1074 
1075  i = nint(100*a)+1;
1076  fhaz = p[i];
1077  a = G4AblaRandom::flat();
1078  // standardRandom(&a, &ix);
1079  p[i] = a;
1080 
1081  // hazard->ial = ix;
1082  // haz=0.4;
1083  return fhaz;
1084 }
G4int mod(G4int a, G4int b)
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
const char * p
Definition: xmltok.h:285
G4int secnds(G4int x)
long G4long
Definition: G4Types.hh:80
tuple x
Definition: test.py:50
#define G4ThreadLocal
Definition: tls.hh:89
int G4int
Definition: G4Types.hh:78
typedef int(XMLCALL *XML_NotStandaloneHandler)(void *userData)
double flat()
Definition: G4AblaRandom.cc:47
double G4double
Definition: G4Types.hh:76
G4int nint(G4double number)

Here is the call graph for this function:

Here is the caller graph for this function:

G4int G4AblaFission::idint ( G4double  a)

Definition at line 1236 of file G4AblaFission.cc.

1237 {
1238  G4int value = 0;
1239 
1240  if(a < 0) {
1241  value = int(std::ceil(a));
1242  }
1243  else {
1244  value = int(std::floor(a));
1245  }
1246 
1247  return value;
1248 }
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
int G4int
Definition: G4Types.hh:78
const XML_Char int const XML_Char * value
Definition: expat.h:331
typedef int(XMLCALL *XML_NotStandaloneHandler)(void *userData)

Here is the call graph for this function:

G4int G4AblaFission::max ( G4int  a,
G4int  b 
)

Definition at line 1148 of file G4AblaFission.cc.

1149 {
1150  if(a > b) {
1151  return a;
1152  }
1153  else {
1154  return b;
1155  }
1156 }
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
tuple b
Definition: test.py:12

Here is the caller graph for this function:

G4double G4AblaFission::max ( G4double  a,
G4double  b 
)

Definition at line 1138 of file G4AblaFission.cc.

1139 {
1140  if(a > b) {
1141  return a;
1142  }
1143  else {
1144  return b;
1145  }
1146 }
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
tuple b
Definition: test.py:12
G4int G4AblaFission::min ( G4int  a,
G4int  b 
)

Definition at line 1128 of file G4AblaFission.cc.

1129 {
1130  if(a < b) {
1131  return a;
1132  }
1133  else {
1134  return b;
1135  }
1136 }
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
tuple b
Definition: test.py:12
G4double G4AblaFission::min ( G4double  a,
G4double  b 
)

Definition at line 1118 of file G4AblaFission.cc.

1119 {
1120  if(a < b) {
1121  return a;
1122  }
1123  else {
1124  return b;
1125  }
1126 }
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
tuple b
Definition: test.py:12
G4int G4AblaFission::mod ( G4int  a,
G4int  b 
)

Definition at line 1202 of file G4AblaFission.cc.

1203 {
1204  if(b != 0) {
1205  return (a - (a/b)*b);
1206  }
1207  else {
1208  return 0;
1209  }
1210 }
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
tuple b
Definition: test.py:12

Here is the caller graph for this function:

G4int G4AblaFission::nint ( G4double  number)

Definition at line 1158 of file G4AblaFission.cc.

1159 {
1160  G4double intpart = 0.0;
1161  G4double fractpart = 0.0;
1162  fractpart = std::modf(number, &intpart);
1163  if(number == 0) {
1164  return 0;
1165  }
1166  if(number > 0) {
1167  if(fractpart < 0.5) {
1168  return int(std::floor(number));
1169  }
1170  else {
1171  return int(std::ceil(number));
1172  }
1173  }
1174  if(number < 0) {
1175  if(fractpart < -0.5) {
1176  return int(std::floor(number));
1177  }
1178  else {
1179  return int(std::ceil(number));
1180  }
1181  }
1182 
1183  return int(std::floor(number));
1184 }
typedef int(XMLCALL *XML_NotStandaloneHandler)(void *userData)
double G4double
Definition: G4Types.hh:76

Here is the call graph for this function:

Here is the caller graph for this function:

G4int G4AblaFission::secnds ( G4int  x)

Definition at line 1186 of file G4AblaFission.cc.

1187 {
1188  time_t mytime;
1189  tm *mylocaltime;
1190 
1191  time(&mytime);
1192  mylocaltime = localtime(&mytime);
1193 
1194  if(x == 0) {
1195  return(mylocaltime->tm_hour*60*60 + mylocaltime->tm_min*60 + mylocaltime->tm_sec);
1196  }
1197  else {
1198  return(mytime - x);
1199  }
1200 }
tuple x
Definition: test.py:50

Here is the caller graph for this function:

G4double G4AblaFission::spdef ( G4int  a,
G4int  z,
G4int  optxfis 
)
void G4AblaFission::standardRandom ( G4double rndm,
G4long seed 
)
G4double G4AblaFission::umass ( G4double  z,
G4double  n,
G4double  beta 
)

Definition at line 115 of file G4AblaFission.cc.

116 {
117  // liquid-drop mass, Myers & Swiatecki, Lysekil, 1967
118  // pure liquid drop, without pairing and shell effects
119 
120  // On input: Z nuclear charge of nucleus
121  // N number of neutrons in nucleus
122  // beta deformation of nucleus
123  // On output: binding energy of nucleus
124 
125  G4double a = 0.0, fumass = 0.0;
126  G4double alpha = 0.0;
127  G4double xcom = 0.0, xvs = 0.0, xe = 0.0;
128  const G4double pi = 3.1416;
129 
130  a = n + z;
131  alpha = ( std::sqrt(5.0/(4.0*pi)) ) * beta;
132 
133  xcom = 1.0 - 1.7826 * ((a - 2.0*z)/a)*((a - 2.0*z)/a);
134  // factor for asymmetry dependence of surface and volume term
135  xvs = - xcom * ( 15.4941 * a -
136  17.9439 * std::pow(a,2.0/3.0) * (1.0+0.4*alpha*alpha) );
137  // sum of volume and surface energy
138  xe = z*z * (0.7053/(std::pow(a,1.0/3.0)) * (1.0-0.2*alpha*alpha) - 1.1529/a);
139  fumass = xvs + xe;
140 
141  return fumass;
142 }
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
const G4int n
tuple z
Definition: test.py:28
static constexpr double pi
Definition: G4SIunits.hh:75
double G4double
Definition: G4Types.hh:76
static const G4double alpha

Here is the caller graph for this function:

G4double G4AblaFission::utilabs ( G4double  a)

Definition at line 1264 of file G4AblaFission.cc.

1265 {
1266  if(a > 0) {
1267  return a;
1268  }
1269  if(a < 0) {
1270  return (-1*a);
1271  }
1272  if(a == 0) {
1273  return a;
1274  }
1275 
1276  return a;
1277 }
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33

The documentation for this class was generated from the following files: