Geant4  10.03.p03
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4eBremsstrahlungRelModel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4eBremsstrahlungRelModel.cc 98737 2016-08-09 12:51:38Z gcosmo $
27 //
28 // -------------------------------------------------------------------
29 //
30 // GEANT4 Class file
31 //
32 //
33 // File name: G4eBremsstrahlungRelModel
34 //
35 // Author: Andreas Schaelicke
36 //
37 // Creation date: 12.08.2008
38 //
39 // Modifications:
40 //
41 // 13.11.08 add SetLPMflag and SetLPMconstant methods
42 // 13.11.08 change default LPMconstant value
43 // 13.10.10 add angular distributon interface (VI)
44 // 31.05.16 change LPMconstant such that it gives suppression variable 's'
45 // that consistent to Migdal's one; fix a small bug in 'logTS1'
46 // computation; better agreement with exp.(M.Novak)
47 //
48 // Main References:
49 // Y.-S.Tsai, Rev. Mod. Phys. 46 (1974) 815; Rev. Mod. Phys. 49 (1977) 421.
50 // S.Klein, Rev. Mod. Phys. 71 (1999) 1501.
51 // T.Stanev et.al., Phys. Rev. D25 (1982) 1291.
52 // M.L.Ter-Mikaelian, High-energy Electromagnetic Processes in Condensed Media, Wiley, 1972.
53 //
54 // -------------------------------------------------------------------
55 //
56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
58 
60 #include "G4PhysicalConstants.hh"
61 #include "G4SystemOfUnits.hh"
62 #include "G4Electron.hh"
63 #include "G4Positron.hh"
64 #include "G4Gamma.hh"
65 #include "Randomize.hh"
66 #include "G4Material.hh"
67 #include "G4Element.hh"
68 #include "G4ElementVector.hh"
69 #include "G4ProductionCutsTable.hh"
71 #include "G4LossTableManager.hh"
72 #include "G4ModifiedTsai.hh"
73 #include "G4DipBustGenerator.hh"
74 
75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
76 
77 const G4double
78 G4eBremsstrahlungRelModel::xgi[]={ 0.0199, 0.1017, 0.2372, 0.4083,
79  0.5917, 0.7628, 0.8983, 0.9801 };
80 const G4double
81 G4eBremsstrahlungRelModel::wgi[]={ 0.0506, 0.1112, 0.1569, 0.1813,
82  0.1813, 0.1569, 0.1112, 0.0506 };
83 const G4double
84 G4eBremsstrahlungRelModel::Fel_light[] = {0., 5.31 , 4.79 , 4.74 , 4.71};
85 const G4double
86 G4eBremsstrahlungRelModel::Finel_light[] = {0., 6.144 , 5.621 , 5.805 , 5.924};
87 
88 using namespace std;
89 
91  const G4ParticleDefinition* p, const G4String& nam)
92  : G4VEmModel(nam),
93  particle(0),
95  isElectron(true),
98  use_completescreening(false)
99 {
100  fParticleChange = nullptr;
102 
103  lowestKinEnergy = 1.0*MeV;
104  SetLowEnergyLimit(lowestKinEnergy);
105 
107 
108  SetLPMFlag(true);
109  //SetAngularDistribution(new G4ModifiedTsai());
111 
112  particleMass = kinEnergy = totalEnergy = z13 = z23 = lnZ = Fel
113  = Finel = fCoulomb = fMax = densityFactor = densityCorr = lpmEnergy
114  = xiLPM = phiLPM = gLPM = klpm = kp = 0.0;
115  currentZ = 0;
116  energyThresholdLPM = 1.e39;
117 
118  InitialiseConstants();
119  if(p) { SetParticle(p); }
120 }
121 
122 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
123 
124 void G4eBremsstrahlungRelModel::InitialiseConstants()
125 {
126  facFel = G4Log(184.15);
127  facFinel = G4Log(1194.);
128 
129  preS1 = 1./(184.15*184.15);
130  logTwo = G4Log(2.);
131 }
132 
133 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
134 
136 {
137 }
138 
139 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
140 
141 void G4eBremsstrahlungRelModel::SetParticle(const G4ParticleDefinition* p)
142 {
143  particle = p;
144  particleMass = p->GetPDGMass();
145  if(p == G4Electron::Electron()) { isElectron = true; }
146  else { isElectron = false;}
147 }
148 
149 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
150 
152  const G4Material* mat,
153  G4double kineticEnergy)
154 {
155  densityFactor = mat->GetElectronDensity()*fMigdalConstant;
156  lpmEnergy = mat->GetRadlen()*fLPMconstant;
157 
158  // Threshold for LPM effect (i.e. below which LPM hidden by density effect)
159  if (LPMFlag()) {
160  energyThresholdLPM=sqrt(densityFactor)*lpmEnergy;
161  } else {
162  energyThresholdLPM=1.e39; // i.e. do not use LPM effect
163  }
164  // calculate threshold for density effect
165  kinEnergy = kineticEnergy;
166  totalEnergy = kineticEnergy + particleMass;
168 
169  // define critical gamma energies (important for integration/dicing)
170  klpm=totalEnergy*totalEnergy/lpmEnergy;
171  kp=sqrt(densityCorr);
172 }
173 
174 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
175 
177  const G4DataVector& cuts)
178 {
179  if(p) { SetParticle(p); }
180 
181  currentZ = 0;
182 
183  if(IsMaster() && LowEnergyLimit() < HighEnergyLimit()) {
184  InitialiseElementSelectors(p, cuts);
185  }
186 
188 }
189 
190 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
191 
193  G4VEmModel* masterModel)
194 {
195  if(LowEnergyLimit() < HighEnergyLimit()) {
197  }
198 }
199 
200 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
201 
202 G4double
204  const G4ParticleDefinition*,
205  G4double cut)
206 {
207  return std::max(lowestKinEnergy, cut);
208 }
209 
210 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
211 
213  const G4Material* material,
214  const G4ParticleDefinition* p,
215  G4double kineticEnergy,
216  G4double cutEnergy)
217 {
218  if(!particle) { SetParticle(p); }
219  if(kineticEnergy < LowEnergyLimit()) { return 0.0; }
220  G4double cut = std::min(cutEnergy, kineticEnergy);
221  if(cut == 0.0) { return 0.0; }
222 
223  SetupForMaterial(particle, material,kineticEnergy);
224 
225  const G4ElementVector* theElementVector = material->GetElementVector();
226  const G4double* theAtomicNumDensityVector = material->GetAtomicNumDensityVector();
227 
228  G4double dedx = 0.0;
229 
230  // loop for elements in the material
231  for (size_t i=0; i<material->GetNumberOfElements(); i++) {
232 
233  G4VEmModel::SetCurrentElement((*theElementVector)[i]);
234  SetCurrentElement((*theElementVector)[i]->GetZasInt());
235 
236  dedx += theAtomicNumDensityVector[i]*(currentZ*currentZ)*ComputeBremLoss(cut);
237  }
238  dedx *= bremFactor;
239 
240 
241  return dedx;
242 }
243 
244 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
245 
246 G4double G4eBremsstrahlungRelModel::ComputeBremLoss(G4double cut)
247 {
248  G4double loss = 0.0;
249 
250  // number of intervals and integration step
251  G4double vcut = cut/totalEnergy;
252  G4int n = (G4int)(20*vcut) + 3;
253  G4double delta = vcut/G4double(n);
254 
255  G4double e0 = 0.0;
256  G4double xs;
257 
258  // integration
259  for(G4int l=0; l<n; l++) {
260 
261  for(G4int i=0; i<8; i++) {
262 
263  G4double eg = (e0 + xgi[i]*delta)*totalEnergy;
264 
265  if(totalEnergy > energyThresholdLPM) {
266  xs = ComputeRelDXSectionPerAtom(eg);
267  } else {
268  xs = ComputeDXSectionPerAtom(eg);
269  }
270  loss += wgi[i]*xs/(1.0 + densityCorr/(eg*eg));
271  }
272  e0 += delta;
273  }
274 
275  loss *= delta*totalEnergy;
276 
277  return loss;
278 }
279 
280 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
281 
283  const G4ParticleDefinition* p,
284  G4double kineticEnergy,
286  G4double cutEnergy,
287  G4double maxEnergy)
288 {
289  if(!particle) { SetParticle(p); }
290  if(kineticEnergy < LowEnergyLimit()) { return 0.0; }
291  G4double cut = std::min(cutEnergy, kineticEnergy);
292  G4double tmax = std::min(maxEnergy, kineticEnergy);
293 
294  if(cut >= tmax) { return 0.0; }
295 
297 
298  G4double cross = ComputeXSectionPerAtom(cut);
299 
300  // allow partial integration
301  if(tmax < kinEnergy) { cross -= ComputeXSectionPerAtom(tmax); }
302 
303  cross *= Z*Z*bremFactor;
304 
305  return cross;
306 }
307 
308 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
309 
310 
311 G4double G4eBremsstrahlungRelModel::ComputeXSectionPerAtom(G4double cut)
312 {
313  G4double cross = 0.0;
314 
315  // number of intervals and integration step
316  G4double vcut = G4Log(cut/totalEnergy);
318  G4int n = (G4int)(0.45*(vmax - vcut)) + 4;
319  // n=1; // integration test
320  G4double delta = (vmax - vcut)/G4double(n);
321 
322  G4double e0 = vcut;
323  G4double xs;
324 
325  // integration
326  for(G4int l=0; l<n; l++) {
327 
328  for(G4int i=0; i<8; i++) {
329 
330  G4double eg = G4Exp(e0 + xgi[i]*delta)*totalEnergy;
331 
332  if(totalEnergy > energyThresholdLPM) {
333  xs = ComputeRelDXSectionPerAtom(eg);
334  } else {
335  xs = ComputeDXSectionPerAtom(eg);
336  }
337  cross += wgi[i]*xs/(1.0 + densityCorr/(eg*eg));
338  }
339  e0 += delta;
340  }
341 
342  cross *= delta;
343 
344  return cross;
345 }
346 
347 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
348 
349 void G4eBremsstrahlungRelModel::CalcLPMFunctions(G4double k)
350 {
351  // *** calculate lpm variable s & sprime ***
352  // Klein eqs. (78) & (79)
353  G4double sprime = sqrt(0.125*k*lpmEnergy/(totalEnergy*(totalEnergy-k)));
354 
355  G4double s1 = preS1*z23;
356  G4double logS1 = 2./3.*lnZ-2.*facFel;
357  G4double logTS1 = 0.5*logTwo+logS1;
358 
359  xiLPM = 2.;
360 
361  if (sprime>1)
362  xiLPM = 1.;
363  else if (sprime>sqrt(2.)*s1) {
364  G4double h = G4Log(sprime)/logTS1;
365  xiLPM = 1+h-0.08*(1-h)*(1-sqr(1-h))/logTS1;
366  }
367 
368  G4double s0 = sprime/sqrt(xiLPM);
369 
370  // *** merging with density effect*** should be only necessary in region
371  // "close to" kp, e.g. k<100*kp using Ter-Mikaelian eq. (20.9)
372  G4double k2 = k*k;
373  s0 *= (1 + (densityCorr/k2) );
374 
375  // recalculate Xi using modified s above
376  // Klein eq. (75)
377  xiLPM = 1.;
378  if (s0<=s1) xiLPM = 2.;
379  else if ( (s1<s0) && (s0<=1) ) { xiLPM = 1. + G4Log(s0)/logS1; }
380 
381 
382  // *** calculate supression functions phi and G ***
383  // Klein eqs. (77)
384  G4double s2=s0*s0;
385  G4double s3=s0*s2;
386  G4double s4=s2*s2;
387 
388  if (s0<0.1) {
389  // high suppression limit
390  phiLPM = 6.*s0 - 18.84955592153876*s2 + 39.47841760435743*s3
391  - 57.69873135166053*s4;
392  gLPM = 37.69911184307752*s2 - 236.8705056261446*s3 + 807.7822389*s4;
393  }
394  else if (s0<1.9516) {
395  // intermediate suppression
396  // using eq.77 approxim. valid s<2.
397  phiLPM = 1.-G4Exp(-6.*s0*(1.+(3.-pi)*s0)
398  +s3/(0.623+0.795*s0+0.658*s2));
399  if (s0<0.415827397755) {
400  // using eq.77 approxim. valid 0.07<s<2
401  G4double psiLPM = 1-G4Exp(-4*s0-8*s2/(1+3.936*s0+4.97*s2-0.05*s3+7.50*s4));
402  gLPM = 3*psiLPM-2*phiLPM;
403  }
404  else {
405  // using alternative parametrisiation
406  G4double pre = -0.16072300849123999 + s0*3.7550300067531581 + s2*-1.7981383069010097
407  + s3*0.67282686077812381 + s4*-0.1207722909879257;
408  gLPM = tanh(pre);
409  }
410  }
411  else {
412  // low suppression limit valid s>2.
413  phiLPM = 1. - 0.0119048/s4;
414  gLPM = 1. - 0.0230655/s4;
415  }
416 
417  // *** make sure suppression is smaller than 1 ***
418  // *** caused by Migdal approximation in xi ***
419  if (xiLPM*phiLPM>1. || s0>0.57) { xiLPM=1./phiLPM; }
420 }
421 
422 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
423 
424 
425 G4double G4eBremsstrahlungRelModel::ComputeRelDXSectionPerAtom(G4double gammaEnergy)
426 // Ultra relativistic model
427 // only valid for very high energies, but includes LPM suppression
428 // * complete screening
429 {
430  if(gammaEnergy < 0.0) { return 0.0; }
431 
432  G4double y = gammaEnergy/totalEnergy;
433  G4double y2 = y*y*.25;
434  G4double yone2 = (1.-y+2.*y2);
435 
436  // ** form factors complete screening case **
437 
438  // ** calc LPM functions -- include ter-mikaelian merging with density effect **
439  // G4double xiLPM, gLPM, phiLPM; // to be made member variables !!!
440  CalcLPMFunctions(gammaEnergy);
441 
442  G4double xz = 1.0/(G4double)currentZ;
443  G4double mainLPM = xiLPM*(y2 * gLPM + yone2*phiLPM) * ( (Fel-fCoulomb) + Finel*xz );
444  G4double secondTerm = (1.-y)/12.*(1. + xz);
445 
446  G4double cross = mainLPM+secondTerm;
447  return cross;
448 }
449 
450 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
451 
453 // Relativistic model
454 // only valid for high energies (and if LPM suppression does not play a role)
455 // * screening according to thomas-fermi-Model (only valid for Z>5)
456 // * no LPM effect
457 {
458 
459  if(gammaEnergy < 0.0) { return 0.0; }
460 
461  G4double y = gammaEnergy/totalEnergy;
462 
463  G4double main=0.,secondTerm=0.;
464 
465  G4double currZ = (G4double)currentZ;
466  if (use_completescreening|| currentZ<5) {
467  // ** form factors complete screening case **
468  main = (3./4.*y*y - y + 1.) * ( (Fel-fCoulomb) + Finel/currZ );
469  secondTerm = (1.-y)/12.*(1.+1./currZ);
470  }
471  else {
472  // ** intermediate screening using Thomas-Fermi FF from Tsai only valid for Z>=5**
473  G4double dd=100.*electron_mass_c2*y/(totalEnergy-gammaEnergy);
474  G4double gg=dd/z13;
475  G4double eps=dd/z23;
476  G4double phi1=Phi1(gg,currZ), phi1m2=Phi1M2(gg,currZ);
477  G4double psi1=Psi1(eps,currZ), psi1m2=Psi1M2(eps,currZ);
478 
479  main = (3./4.*y*y - y + 1.) *
480  ( (0.25*phi1-1./3.*lnZ-fCoulomb) + (0.25*psi1-2./3.*lnZ)/currZ );
481  secondTerm = (1.-y)/8.*(phi1m2+psi1m2/currZ);
482  }
483  G4double cross = main+secondTerm;
484  return cross;
485 }
486 
487 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
488 
490  std::vector<G4DynamicParticle*>* vdp,
491  const G4MaterialCutsCouple* couple,
492  const G4DynamicParticle* dp,
493  G4double cutEnergy,
494  G4double maxEnergy)
495 {
496  G4double kineticEnergy = dp->GetKineticEnergy();
497  if(kineticEnergy < LowEnergyLimit()) { return; }
498  G4double cut = std::min(cutEnergy, kineticEnergy);
499  G4double emax = std::min(maxEnergy, kineticEnergy);
500  if(cut >= emax) { return; }
501 
502  SetupForMaterial(particle, couple->GetMaterial(), kineticEnergy);
503 
504  const G4Element* elm =
505  SelectRandomAtom(couple,particle,kineticEnergy,cut,emax);
506  SetCurrentElement(elm->GetZasInt());
507 
508  kinEnergy = kineticEnergy;
509  totalEnergy = kineticEnergy + particleMass;
511 
512  //G4double fmax= fMax;
513  G4bool highe = true;
514  if(totalEnergy < energyThresholdLPM) { highe = false; }
515 
516  G4double xmin = G4Log(cut*cut + densityCorr);
517  G4double xmax = G4Log(emax*emax + densityCorr);
518  G4double gammaEnergy, f, x;
519 
520  CLHEP::HepRandomEngine* rndmEngine = G4Random::getTheEngine();
521 
522  do {
523  x = G4Exp(xmin + rndmEngine->flat()*(xmax - xmin)) - densityCorr;
524  if(x < 0.0) { x = 0.0; }
525  gammaEnergy = sqrt(x);
526  if(highe) { f = ComputeRelDXSectionPerAtom(gammaEnergy); }
527  else { f = ComputeDXSectionPerAtom(gammaEnergy); }
528 
529  if ( f > fMax ) {
530  G4cout << "### G4eBremsstrahlungRelModel Warning: Majoranta exceeded! "
531  << f << " > " << fMax
532  << " Egamma(MeV)= " << gammaEnergy
533  << " Ee(MeV)= " << kineticEnergy
534  << " " << GetName()
535  << G4endl;
536  }
537 
538  // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
539  } while (f < fMax*rndmEngine->flat());
540 
541  //
542  // angles of the emitted gamma. ( Z - axis along the parent particle)
543  // use general interface
544  //
545 
546  G4ThreeVector gammaDirection =
547  GetAngularDistribution()->SampleDirection(dp, totalEnergy-gammaEnergy,
548  currentZ,
549  couple->GetMaterial());
550 
551  // create G4DynamicParticle object for the Gamma
552  G4DynamicParticle* gamma = new G4DynamicParticle(theGamma,gammaDirection,
553  gammaEnergy);
554  vdp->push_back(gamma);
555 
556  G4double totMomentum = sqrt(kineticEnergy*(totalEnergy + electron_mass_c2));
557  G4ThreeVector direction = (totMomentum*dp->GetMomentumDirection()
558  - gammaEnergy*gammaDirection).unit();
559 
560  // energy of primary
561  G4double finalE = kineticEnergy - gammaEnergy;
562 
563  // stop tracking and create new secondary instead of primary
564  if(gammaEnergy > SecondaryThreshold()) {
567  G4DynamicParticle* el =
568  new G4DynamicParticle(const_cast<G4ParticleDefinition*>(particle),
569  direction, finalE);
570  vdp->push_back(el);
571 
572  // continue tracking
573  } else {
576  }
577 }
578 
579 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
580 
581 
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double cutEnergy, G4double maxEnergy) override
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:643
G4ParticleChangeForLoss * GetParticleChangeForLoss()
Definition: G4VEmModel.cc:118
G4double SecondaryThreshold() const
Definition: G4VEmModel.hh:671
G4bool isElectron(G4int ityp)
std::vector< G4Element * > G4ElementVector
G4double GetKineticEnergy() const
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
Definition: G4VEmModel.cc:146
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:636
const char * p
Definition: xmltok.h:285
G4VEmAngularDistribution * GetAngularDistribution()
Definition: G4VEmModel.hh:619
G4bool LPMFlag() const
Definition: G4VEmModel.hh:678
G4bool IsMaster() const
Definition: G4VEmModel.hh:725
int main(int argc, char **argv)
Definition: genwindef.cpp:30
static const G4double eps
tuple x
Definition: test.py:50
virtual double flat()=0
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:190
int G4int
Definition: G4Types.hh:78
static G4NistManager * Instance()
const G4ParticleDefinition * particle
string material
Definition: eplot.py:19
G4GLOB_DLL std::ostream G4cout
virtual G4double MinPrimaryEnergy(const G4Material *, const G4ParticleDefinition *, G4double cut) override
virtual G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, const G4Material *)=0
G4double GetElectronDensity() const
Definition: G4Material.hh:217
bool G4bool
Definition: G4Types.hh:79
const G4ThreeVector & GetMomentumDirection() const
void SetProposedKineticEnergy(G4double proposedKinEnergy)
float electron_mass_c2
Definition: hepunit.py:274
const G4int n
double flat()
Definition: G4AblaRandom.cc:47
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
std::vector< G4EmElementSelector * > * GetElementSelectors()
Definition: G4VEmModel.hh:809
void SetProposedMomentumDirection(const G4ThreeVector &dir)
G4double GetRadlen() const
Definition: G4Material.hh:220
const G4double * GetAtomicNumDensityVector() const
Definition: G4Material.hh:216
G4eBremsstrahlungRelModel(const G4ParticleDefinition *p=0, const G4String &nam="eBremLPM")
static const G4double emax
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
electron_Compton_length
Definition: hepunit.py:289
void SetElementSelectors(std::vector< G4EmElementSelector * > *)
Definition: G4VEmModel.hh:817
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
virtual void SetupForMaterial(const G4ParticleDefinition *, const G4Material *, G4double) override
G4double GetPDGMass() const
int G4lrint(double ad)
Definition: templates.hh:163
T max(const T t1, const T t2)
brief Return the largest of the two arguments
virtual G4double ComputeDXSectionPerAtom(G4double gammaEnergy)
void SetLPMFlag(G4bool val)
Definition: G4VEmModel.hh:781
void SetAngularDistribution(G4VEmAngularDistribution *)
Definition: G4VEmModel.hh:626
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
static G4Electron * Electron()
Definition: G4Electron.cc:94
#define G4endl
Definition: G4ios.hh:61
static constexpr double MeV
Definition: G4SIunits.hh:214
const G4String & GetName() const
Definition: G4VEmModel.hh:802
G4ParticleChangeForLoss * fParticleChange
static constexpr double pi
Definition: G4SIunits.hh:75
size_t GetNumberOfElements() const
Definition: G4Material.hh:186
T sqr(const T &x)
Definition: templates.hh:145
double G4double
Definition: G4Types.hh:76
void ProposeTrackStatus(G4TrackStatus status)
virtual void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *masterModel) override
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:739
virtual G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy) override
void SetCurrentElement(const G4Element *)
Definition: G4VEmModel.hh:461
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double tkin, G4double Z, G4double, G4double cutEnergy, G4double maxEnergy=DBL_MAX) override
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:544
const G4Material * GetMaterial() const