47             fBfield(false), fEfield(false), fGfield(false), 
 
   48             fgradB(false), fSpin(false),
 
   49             charge(0.), mass(0.), magMoment(0.), spin(0.),
 
   50             ElectroMagCof(0.), omegac(0.), anomaly(0.),
 
   68    spin      = particleCharge.
GetSpin();
 
   71    omegac = (
eplus/mass)*c_light;
 
   76    if ( spin != 0. ) g_BMT = (std::abs(magMoment)/muB)/spin;
 
   79    anomaly = (g_BMT - 2.)/2.;
 
  117    G4double momentum_mag_square = y[3]*y[3] + y[4]*y[4] + y[5]*y[5];
 
  118    G4double inv_momentum_magnitude = 1.0 / std::sqrt( momentum_mag_square );
 
  120    G4double Energy = std::sqrt(momentum_mag_square + mass*mass);
 
  123    G4double cof1 = ElectroMagCof*inv_momentum_magnitude;
 
  125    G4double cof3 = inv_momentum_magnitude*mass;
 
  127    dydx[0] = y[3]*inv_momentum_magnitude;       
 
  128    dydx[1] = y[4]*inv_momentum_magnitude;       
 
  129    dydx[2] = y[5]*inv_momentum_magnitude;       
 
  135    G4double field[18] = {0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.};
 
  145          dydx[3] += cof1*(y[4]*field[2] - y[5]*field[1]);
 
  146          dydx[4] += cof1*(y[5]*field[0] - y[3]*field[2]);
 
  147          dydx[5] += cof1*(y[3]*field[1] - y[4]*field[0]);
 
  165          dydx[3] += cof1*cof2*field[3];
 
  166          dydx[4] += cof1*cof2*field[4];
 
  167          dydx[5] += cof1*cof2*field[5];
 
  173    if (!fBfield && !fEfield) {
 
  185          dydx[3] += field[6]*cof2*cof3/
c_light;
 
  186          dydx[4] += field[7]*cof2*cof3/
c_light;
 
  187          dydx[5] += field[8]*cof2*cof3/
c_light;
 
  193    if (!fBfield && !fEfield && !fGfield) {
 
  195       field[10] = Field[1];
 
  196       field[11] = Field[2];
 
  197       field[12] = Field[3];
 
  198       field[13] = Field[4];
 
  199       field[14] = Field[5];
 
  200       field[15] = Field[6];
 
  201       field[16] = Field[7];
 
  202       field[17] = Field[8];
 
  205       field[10] = Field[10];
 
  206       field[11] = Field[11];
 
  207       field[12] = Field[12];
 
  208       field[13] = Field[13];
 
  209       field[14] = Field[14];
 
  210       field[15] = Field[15];
 
  211       field[16] = Field[16];
 
  212       field[17] = Field[17];
 
  216       if (magMoment != 0.) {
 
  228          dydx[3] += magMoment*(y[9]*field[ 9]+y[10]*field[10]+y[11]*field[11])
 
  229                                                 *inv_momentum_magnitude*Energy;
 
  230          dydx[4] += magMoment*(y[9]*field[12]+y[10]*field[13]+y[11]*field[14])
 
  231                                                 *inv_momentum_magnitude*Energy;
 
  232          dydx[5] += magMoment*(y[9]*field[15]+y[10]*field[16]+y[11]*field[17])
 
  233                                                 *inv_momentum_magnitude*Energy;
 
  242    dydx[7] = inverse_velocity;
 
  269       u *= inv_momentum_magnitude;
 
  271       G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u);
 
  272       G4double ucb = (anomaly+1./gamma)/beta;
 
  273       G4double uce = anomaly + 1./(gamma+1.);
 
  278       if (charge == 0.) pcharge = 1.;
 
  279       else pcharge = charge;
 
  282       if (Spin.
mag2() != 0.) {
 
  285              pcharge*omegac*( ucb*(Spin.
cross(BField))-udb*(Spin.
cross(u)) );
 
  292              pcharge*omegac*( uce*(u*(Spin*EField) - EField*(Spin*u)) );
 
  296       dydx[ 9] = dSpin.
x();
 
  297       dydx[10] = dSpin.
y();
 
  298       dydx[11] = dSpin.
z();
 
G4double GetCharge() const 
 
void EvaluateRhsGivenB(const G4double y[], const G4double Field[], G4double dydx[]) const 
 
void SetChargeMomentumMass(G4ChargeState particleCharge, G4double MomentumXc, G4double mass)
 
static constexpr double eplus
 
G4RepleteEofM(G4Field *, G4int nvar=8)
 
G4bool IsGravityActive() const 
 
G4double GetMagneticDipoleMoment() const 
 
Hep3Vector cross(const Hep3Vector &) const