Geant4  10.03.p03
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4RKFieldIntegrator.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // G4RKFieldIntegrator
27 #include "G4RKFieldIntegrator.hh"
28 #include "G4PhysicalConstants.hh"
29 #include "G4SystemOfUnits.hh"
30 #include "G4NucleiProperties.hh"
31 #include "G4FermiMomentum.hh"
32 #include "G4NuclearFermiDensity.hh"
34 #include "G4Nucleon.hh"
35 #include "G4Exp.hh"
36 #include "G4Log.hh"
37 #include "G4Pow.hh"
38 
39 // Class G4RKFieldIntegrator
40 //*************************************************************************************************************************************
41 
42 // only theActive are propagated, nothing else
43 // only theSpectators define the field, nothing else
44 
45 void G4RKFieldIntegrator::Transport(G4KineticTrackVector &theActive, const G4KineticTrackVector &theSpectators, G4double theTimeStep)
46 {
47  (void)theActive;
48  (void)theSpectators;
49  (void)theTimeStep;
50 }
51 
52 
53 G4double G4RKFieldIntegrator::CalculateTotalEnergy(const G4KineticTrackVector& Barions)
54 {
55  const G4double Alpha = 0.25/fermi/fermi;
56  const G4double t1 = -7264.04*fermi*fermi*fermi;
57  const G4double tGamma = 87.65*fermi*fermi*fermi*fermi*fermi*fermi;
58 // const G4double Gamma = 1.676;
59  const G4double Vo = -0.498*fermi;
60  const G4double GammaY = 1.4*fermi;
61 
62  G4double Etot = 0;
63  G4int nBarion = Barions.size();
64  for(G4int c1 = 0; c1 < nBarion; c1++)
65  {
66  G4KineticTrack* p1 = Barions.operator[](c1);
67  // Ekin
68  Etot += p1->Get4Momentum().e();
69  for(G4int c2 = c1 + 1; c2 < nBarion; c2++)
70  {
71  G4KineticTrack* p2 = Barions.operator[](c2);
72  G4double r12 = (p1->GetPosition() - p2->GetPosition()).mag()*fermi;
73 
74  // Esk2
75  Etot += t1*G4Pow::GetInstance()->A23(Alpha/pi)*G4Exp(-Alpha*r12*r12);
76 
77  // Eyuk
78  Etot += Vo*0.5/r12*G4Exp(1/(4*Alpha*GammaY*GammaY))*
79  (G4Exp(-r12/GammaY)*(1 - Erf(0.5/GammaY/std::sqrt(Alpha) - std::sqrt(Alpha)*r12)) -
80  G4Exp( r12/GammaY)*(1 - Erf(0.5/GammaY/std::sqrt(Alpha) + std::sqrt(Alpha)*r12)));
81 
82  // Ecoul
83  Etot += 1.44*p1->GetDefinition()->GetPDGCharge()*p2->GetDefinition()->GetPDGCharge()/r12*Erf(std::sqrt(Alpha)*r12);
84 
85  // Epaul
86  Etot = 0;
87 
88  for(G4int c3 = c2 + 1; c3 < nBarion; c3++)
89  {
90  G4KineticTrack* p3 = Barions.operator[](c3);
91  G4double r13 = (p1->GetPosition() - p3->GetPosition()).mag()*fermi;
92 
93  // Esk3
94  Etot = tGamma*G4Pow::GetInstance()->powA(4*Alpha*Alpha/3/pi/pi, 1.5)*G4Exp(-Alpha*(r12*r12 + r13*r13));
95  }
96  }
97  }
98  return Etot;
99 }
100 
101 //************************************************************************************************
102 // originated from the Numerical recipes error function
103 G4double G4RKFieldIntegrator::Erf(G4double X)
104 {
105  const G4double Z1 = 1;
106  const G4double HF = Z1/2;
107  const G4double C1 = 0.56418958;
108 
109  const G4double P10 = +3.6767877;
110  const G4double Q10 = +3.2584593;
111  const G4double P11 = -9.7970465E-2;
112 
113 // static G4ThreadLocal G4double P2[5] = { 7.3738883, 6.8650185, 3.0317993, 0.56316962, 4.3187787e-5 };
114 // static G4ThreadLocal G4double Q2[5] = { 7.3739609, 15.184908, 12.79553, 5.3542168, 1. };
115  const G4double P2[5] = { 7.3738883, 6.8650185, 3.0317993, 0.56316962, 4.3187787e-5 };
116  const G4double Q2[5] = { 7.3739609, 15.184908, 12.79553, 5.3542168, 1. };
117 
118  const G4double P30 = -1.2436854E-1;
119  const G4double Q30 = +4.4091706E-1;
120  const G4double P31 = -9.6821036E-2;
121 
122  G4double V = std::abs(X);
123  G4double H;
124  G4double Y;
125  G4int c1;
126 
127  if(V < HF)
128  {
129  Y = V*V;
130  H = X*(P10 + P11*Y)/(Q10+Y);
131  }
132  else
133  {
134  if(V < 4)
135  {
136  G4double AP = P2[4];
137  G4double AQ = Q2[4];
138  for(c1 = 3; c1 >= 0; c1--)
139  {
140  AP = P2[c1] + V*AP;
141  AQ = Q2[c1] + V*AQ;
142  }
143  H = 1 - G4Exp(-V*V)*AP/AQ;
144  }
145  else
146  {
147  Y = 1./V*V;
148  H = 1 - G4Exp(-V*V)*(C1+Y*(P30 + P31*Y)/(Q30 + Y))/V;
149  }
150  if (X < 0)
151  H = -H;
152  }
153  return H;
154 }
155 
156 //************************************************************************************************
157 //This is a QMD version to calculate excitation energy of a fragment,
158 //which consists from G4KTV &the Particles
159 /*
160 G4double G4RKFieldIntegrator::GetExcitationEnergy(const G4KineticTrackVector &theParticles)
161 {
162  // Excitation energy of a fragment consisting from A nucleons and Z protons
163  // is Etot - Z*Mp - (A - Z)*Mn - B(A, Z), where B(A,Z) is the binding energy of fragment
164  // and Mp, Mn are proton and neutron mass, respectively.
165  G4int NZ = 0;
166  G4int NA = 0;
167  G4double Etot = CalculateTotalEnergy(theParticles);
168  for(G4int cParticle = 0; cParticle < theParticles.length(); cParticle++)
169  {
170  G4KineticTrack* pKineticTrack = theParticles.at(cParticle);
171  G4int Encoding = std::abs(pKineticTrack->GetDefinition()->GetPDGEncoding());
172  if (Encoding == 2212)
173  NZ++, NA++;
174  if (Encoding == 2112)
175  NA++;
176  Etot -= pKineticTrack->GetDefinition()->GetPDGMass();
177  }
178  return Etot - G4NucleiProperties::GetBindingEnergy(NZ, NA);
179 }
180 */
181 
182 //*************************************************************************************************************************************
183 //This is a simplified method to get excitation energy of a residual
184 // nucleus with nHitNucleons.
186 {
187  const G4double MeanE = 50;
188  G4double Sum = 0;
189  for(G4int c1 = 0; c1 < nHitNucleons; c1++)
190  {
191  Sum += -MeanE*G4Log(G4UniformRand());
192  }
193  return Sum;
194 }
195 //*************************************************************************************************************************************
196 
197 /*
198 //This is free propagation of particles for CASCADE mode. Target nucleons should be frozen
199 void G4RKFieldIntegrator::Integrate(G4KineticTrackVector& theParticles)
200  {
201  for(G4int cParticle = 0; cParticle < theParticles.length(); cParticle++)
202  {
203  G4KineticTrack* pKineticTrack = theParticles.at(cParticle);
204  pKineticTrack->SetPosition(pKineticTrack->GetPosition() + theTimeStep*pKineticTrack->Get4Momentum().boostVector());
205  }
206  }
207 */
208 //*************************************************************************************************************************************
209 
210 void G4RKFieldIntegrator::Integrate(const G4KineticTrackVector& theBarions, G4double theTimeStep)
211 {
212  for(size_t cParticle = 0; cParticle < theBarions.size(); cParticle++)
213  {
214  G4KineticTrack* pKineticTrack = theBarions[cParticle];
215  pKineticTrack->SetPosition(pKineticTrack->GetPosition() + theTimeStep*pKineticTrack->Get4Momentum().boostVector());
216  }
217 }
218 
219 //*************************************************************************************************************************************
220 
221 // constant to calculate theCoulomb barrier
222 const G4double G4RKFieldIntegrator::coulomb = 1.44 / 1.14 * MeV;
223 
224 // kaon's potential constant (real part only)
225 // 0.35 + i0.82 or 0.63 + i0.89 fermi
226 const G4double G4RKFieldIntegrator::a_kaon = 0.35;
227 
228 // pion's potential constant (real part only)
230 // 0.35 + i0.82 or 0.63 + i0.89 fermi
231 const G4double G4RKFieldIntegrator::a_pion = 0.35;
232 
233 // antiproton's potential constant (real part only)
234 // 1.53 + i2.50 fermi
235 const G4double G4RKFieldIntegrator::a_antiproton = 1.53;
236 
237 // methods for calculating potentials for different types of particles
238 // aPosition is relative to the nucleus center
240 {
241  /*
242  const G4double Mn = 939.56563 * MeV; // mass of nuetron
243 
244  G4VNuclearDensity *theDencity;
245  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
246  else theDencity = new G4NuclearFermiDensity(theA, theZ);
247 
248  // GetDencity() accepts only G4ThreeVector so build it:
249  G4ThreeVector aPosition(0.0, 0.0, radius);
250  G4double density = theDencity->GetDensity(aPosition);
251  delete theDencity;
252 
253  G4FermiMomentum *fm = new G4FermiMomentum();
254  fm->Init(theA, theZ);
255  G4double fermiMomentum = fm->GetFermiMomentum(density);
256  delete fm;
257 
258  return sqr(fermiMomentum)/(2 * Mn)
259  + G4CreateNucleus::GetBindingEnergy(theZ, theA)/theA;
260  //+ G4NucleiProperties::GetBindingEnergy(theZ, theA)/theA;
261  */
262 
263  return 0.0;
264 }
265 
267 {
268  /*
269  // calculate Coulomb barrier value
270  G4double theCoulombBarrier = coulomb * theZ/(1. + G4Pow::GetInstance()->Z13(theA));
271  const G4double Mp = 938.27231 * MeV; // mass of proton
272 
273  G4VNuclearDensity *theDencity;
274  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
275  else theDencity = new G4NuclearFermiDensity(theA, theZ);
276 
277  // GetDencity() accepts only G4ThreeVector so build it:
278  G4ThreeVector aPosition(0.0, 0.0, radius);
279  G4double density = theDencity->GetDensity(aPosition);
280  delete theDencity;
281 
282  G4FermiMomentum *fm = new G4FermiMomentum();
283  fm->Init(theA, theZ);
284  G4double fermiMomentum = fm->GetFermiMomentum(density);
285  delete fm;
286 
287  return sqr(fermiMomentum)/ (2 * Mp)
288  + G4CreateNucleus::GetBindingEnergy(theZ, theA)/theA;
289  //+ G4NucleiProperties::GetBindingEnergy(theZ, theA)/theA
290  + theCoulombBarrier;
291  */
292 
293  return 0.0;
294 }
295 
297 {
298  /*
299  //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
300  G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
301  + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
302  + G4CreateNucleus::GetBindingEnergy(theZ, theA);
303 
304  const G4double Mp = 938.27231 * MeV; // mass of proton
305  G4double mu = (theM * Mp)/(theM + Mp);
306 
307  // antiproton's potential coefficient
308  // V = coeff_antiproton * nucleus_density
309  G4double coeff_antiproton = -2.*pi/mu * (1. + Mp) * a_antiproton;
310 
311  G4VNuclearDensity *theDencity;
312  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
313  else theDencity = new G4NuclearFermiDensity(theA, theZ);
314 
315  // GetDencity() accepts only G4ThreeVector so build it:
316  G4ThreeVector aPosition(0.0, 0.0, radius);
317  G4double density = theDencity->GetDensity(aPosition);
318  delete theDencity;
319 
320  return coeff_antiproton * density;
321  */
322 
323  return 0.0;
324 }
325 
327 {
328  /*
329  //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
330  G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
331  + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
332  + G4CreateNucleus::GetBindingEnergy(theZ, theA);
333 
334  const G4double Mk = 496. * MeV; // mass of "kaon"
335  G4double mu = (theM * Mk)/(theM + Mk);
336 
337  // kaon's potential coefficient
338  // V = coeff_kaon * nucleus_density
339  G4double coeff_kaon = -2.*pi/mu * (1. + Mk/theM) * a_kaon;
340 
341  G4VNuclearDensity *theDencity;
342  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
343  else theDencity = new G4NuclearFermiDensity(theA, theZ);
344 
345  // GetDencity() accepts only G4ThreeVector so build it:
346  G4ThreeVector aPosition(0.0, 0.0, radius);
347  G4double density = theDencity->GetDensity(aPosition);
348  delete theDencity;
349 
350  return coeff_kaon * density;
351  */
352 
353  return 0.0;
354 }
355 
357 {
358  /*
359  //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
360  G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
361  + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
362  + G4CreateNucleus::GetBindingEnergy(theZ, theA);
363 
364  const G4double Mpi = 139. * MeV; // mass of "pion"
365  G4double mu = (theM * Mpi)/(theM + Mpi);
366 
367  // pion's potential coefficient
368  // V = coeff_pion * nucleus_density
369  G4double coeff_pion = -2.*pi/mu * (1. + Mpi) * a_pion;
370 
371  G4VNuclearDensity *theDencity;
372  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
373  else theDencity = new G4NuclearFermiDensity(theA, theZ);
374 
375  // GetDencity() accepts only G4ThreeVector so build it:
376  G4ThreeVector aPosition(0.0, 0.0, radius);
377  G4double density = theDencity->GetDensity(aPosition);
378  delete theDencity;
379 
380  return coeff_pion * density;
381  */
382 
383  return 0.0;
384 }
G4double GetPionPotential(G4double radius)
static G4Pow * GetInstance()
Definition: G4Pow.cc:55
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:259
Hep3Vector boostVector() const
static c2_factory< G4double > c2
double Y(double density)
const double C1
const G4ThreeVector & GetPosition() const
static const G4double P10[nE]
static const G4double P11[nE]
int G4int
Definition: G4Types.hh:78
void Transport(G4KineticTrackVector &theActive, const G4KineticTrackVector &theSpectators, G4double theTimeStep)
G4double A23(G4double A) const
Definition: G4Pow.hh:160
#define G4UniformRand()
Definition: Randomize.hh:97
void SetPosition(const G4ThreeVector aPosition)
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
tuple t1
Definition: plottest35.py:33
G4double GetKaonPotential(G4double radius)
static const G4double * P2[nN]
G4double GetProtonPotential(G4double radius)
G4double GetExcitationEnergy(G4int nHitNucleons, const G4KineticTrackVector &theParticles)
static constexpr double MeV
Definition: G4SIunits.hh:214
static constexpr double pi
Definition: G4SIunits.hh:75
G4double GetNeutronPotential(G4double radius)
double G4double
Definition: G4Types.hh:76
static constexpr double fermi
Definition: G4SIunits.hh:103
G4double GetPDGCharge() const
const G4LorentzVector & Get4Momentum() const
const G4ParticleDefinition * GetDefinition() const
typedef void(XMLCALL *XML_ElementDeclHandler)(void *userData
tuple c1
Definition: plottest35.py:14
G4double GetAntiprotonPotential(G4double radius)