Geant4  10.03.p03
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4GaussLegendreQ.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4GaussLegendreQ.hh 67970 2013-03-13 10:10:06Z gcosmo $
28 //
29 // Class description:
30 //
31 // Class for Gauss-Legendre integration method
32 // Roots of ortogonal polynoms and corresponding weights are calculated based on
33 // iteration method (by bisection Newton algorithm). Constant values for initial
34 // approximations were derived from the book: M. Abramowitz, I. Stegun, Handbook
35 // of mathematical functions, DOVER Publications INC, New York 1965 ; chapters 9,
36 // 10, and 22 .
37 //
38 // ------------------------- CONSTRUCTORS: -------------------------------
39 //
40 // Constructor for GaussLegendre quadrature method. The value nLegendre set the
41 // accuracy required, i.e the number of points where the function pFunction will
42 // be evaluated during integration. The constructor creates the arrays for
43 // abscissas and weights that used in Gauss-Legendre quadrature method.
44 // The values a and b are the limits of integration of the pFunction.
45 //
46 // G4GaussLegendreQ( function pFunction,
47 // G4int nLegendre )
48 //
49 // -------------------------- METHODS: ---------------------------------------
50 //
51 // Returns the integral of the function to be pointed by fFunction between a and b,
52 // by 2*fNumber point Gauss-Legendre integration: the function is evaluated exactly
53 // 2*fNumber Times at interior points in the range of integration. Since the weights
54 // and abscissas are, in this case, symmetric around the midpoint of the range of
55 // integration, there are actually only fNumber distinct values of each.
56 //
57 // G4double Integral(G4double a, G4double b) const
58 //
59 // -----------------------------------------------------------------------
60 //
61 // Returns the integral of the function to be pointed by fFunction between a and b,
62 // by ten point Gauss-Legendre integration: the function is evaluated exactly
63 // ten Times at interior points in the range of integration. Since the weights
64 // and abscissas are, in this case, symmetric around the midpoint of the range of
65 // integration, there are actually only five distinct values of each
66 //
67 // G4double
68 // QuickIntegral(G4double a, G4double b) const
69 //
70 // ---------------------------------------------------------------------
71 //
72 // Returns the integral of the function to be pointed by fFunction between a and b,
73 // by 96 point Gauss-Legendre integration: the function is evaluated exactly
74 // ten Times at interior points in the range of integration. Since the weights
75 // and abscissas are, in this case, symmetric around the midpoint of the range of
76 // integration, there are actually only five distinct values of each
77 //
78 // G4double
79 // AccurateIntegral(G4double a, G4double b) const
80 
81 // ------------------------------- HISTORY --------------------------------
82 //
83 // 13.05.97 V.Grichine (Vladimir.Grichine@cern.chz0
84 
85 #ifndef G4GAUSSLEGENDREQ_HH
86 #define G4GAUSSLEGENDREQ_HH
87 
88 #include "G4VGaussianQuadrature.hh"
89 
91 {
92 public:
93  explicit G4GaussLegendreQ( function pFunction ) ;
94 
95 
96  G4GaussLegendreQ( function pFunction,
97  G4int nLegendre ) ;
98 
99  // Methods
100 
102 
104 
106 
107 private:
108 
110  G4GaussLegendreQ& operator=(const G4GaussLegendreQ&);
111 };
112 
113 #endif
G4double QuickIntegral(G4double a, G4double b) const
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
G4double Integral(G4double a, G4double b) const
int G4int
Definition: G4Types.hh:78
tuple b
Definition: test.py:12
G4GaussLegendreQ(function pFunction)
double G4double
Definition: G4Types.hh:76
G4double AccurateIntegral(G4double a, G4double b) const