Geant4  10.03.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4RKFieldIntegrator Class Reference

#include <G4RKFieldIntegrator.hh>

Inheritance diagram for G4RKFieldIntegrator:
Collaboration diagram for G4RKFieldIntegrator:

Public Member Functions

 G4RKFieldIntegrator ()
 
 G4RKFieldIntegrator (const G4RKFieldIntegrator &)
 
 ~G4RKFieldIntegrator ()
 
const G4RKFieldIntegratoroperator= (const G4RKFieldIntegrator &)
 
int operator== (const G4RKFieldIntegrator &) const
 
int operator!= (const G4RKFieldIntegrator &) const
 
void Transport (G4KineticTrackVector &theActive, const G4KineticTrackVector &theSpectators, G4double theTimeStep)
 
G4double GetExcitationEnergy (G4int nHitNucleons, const G4KineticTrackVector &theParticles)
 
void Init (G4int z, G4int a)
 
G4double GetNeutronPotential (G4double radius)
 
G4double GetNeutronPotential (G4ThreeVector &aPosition)
 
G4double GetProtonPotential (G4double radius)
 
G4double GetProtonPotential (G4ThreeVector &aPosition)
 
G4double GetAntiprotonPotential (G4double radius)
 
G4double GetAntiprotonPotential (G4ThreeVector &aPosition)
 
G4double GetKaonPotential (G4double radius)
 
G4double GetKaonPotential (G4ThreeVector &aPosition)
 
G4double GetPionPotential (G4double radius)
 
G4double GetPionPotential (G4ThreeVector &aPosition)
 
- Public Member Functions inherited from G4FieldPropagation
 G4FieldPropagation ()
 
 G4FieldPropagation (const G4FieldPropagation &)
 
virtual ~G4FieldPropagation ()
 

Detailed Description

Definition at line 31 of file G4RKFieldIntegrator.hh.

Constructor & Destructor Documentation

G4RKFieldIntegrator::G4RKFieldIntegrator ( )
inline

Definition at line 34 of file G4RKFieldIntegrator.hh.

34 {}
G4RKFieldIntegrator::G4RKFieldIntegrator ( const G4RKFieldIntegrator )
inline

Definition at line 35 of file G4RKFieldIntegrator.hh.

G4RKFieldIntegrator::~G4RKFieldIntegrator ( )
inline

Definition at line 37 of file G4RKFieldIntegrator.hh.

37 {}

Member Function Documentation

G4double G4RKFieldIntegrator::GetAntiprotonPotential ( G4double  radius)
virtual

Implements G4FieldPropagation.

Definition at line 296 of file G4RKFieldIntegrator.cc.

297 {
298  /*
299  //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
300  G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
301  + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
302  + G4CreateNucleus::GetBindingEnergy(theZ, theA);
303 
304  const G4double Mp = 938.27231 * MeV; // mass of proton
305  G4double mu = (theM * Mp)/(theM + Mp);
306 
307  // antiproton's potential coefficient
308  // V = coeff_antiproton * nucleus_density
309  G4double coeff_antiproton = -2.*pi/mu * (1. + Mp) * a_antiproton;
310 
311  G4VNuclearDensity *theDencity;
312  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
313  else theDencity = new G4NuclearFermiDensity(theA, theZ);
314 
315  // GetDencity() accepts only G4ThreeVector so build it:
316  G4ThreeVector aPosition(0.0, 0.0, radius);
317  G4double density = theDencity->GetDensity(aPosition);
318  delete theDencity;
319 
320  return coeff_antiproton * density;
321  */
322 
323  return 0.0;
324 }
G4double G4RKFieldIntegrator::GetAntiprotonPotential ( G4ThreeVector aPosition)
inlinevirtual

Implements G4FieldPropagation.

Definition at line 61 of file G4RKFieldIntegrator.hh.

61 {return GetAntiprotonPotential(aPosition.mag());};
double mag() const
G4double GetAntiprotonPotential(G4double radius)

Here is the call graph for this function:

Here is the caller graph for this function:

G4double G4RKFieldIntegrator::GetExcitationEnergy ( G4int  nHitNucleons,
const G4KineticTrackVector theParticles 
)
virtual

Implements G4FieldPropagation.

Definition at line 185 of file G4RKFieldIntegrator.cc.

186 {
187  const G4double MeanE = 50;
188  G4double Sum = 0;
189  for(G4int c1 = 0; c1 < nHitNucleons; c1++)
190  {
191  Sum += -MeanE*G4Log(G4UniformRand());
192  }
193  return Sum;
194 }
int G4int
Definition: G4Types.hh:78
#define G4UniformRand()
Definition: Randomize.hh:97
G4double G4Log(G4double x)
Definition: G4Log.hh:230
double G4double
Definition: G4Types.hh:76
tuple c1
Definition: plottest35.py:14

Here is the call graph for this function:

G4double G4RKFieldIntegrator::GetKaonPotential ( G4double  radius)
virtual

Implements G4FieldPropagation.

Definition at line 326 of file G4RKFieldIntegrator.cc.

327 {
328  /*
329  //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
330  G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
331  + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
332  + G4CreateNucleus::GetBindingEnergy(theZ, theA);
333 
334  const G4double Mk = 496. * MeV; // mass of "kaon"
335  G4double mu = (theM * Mk)/(theM + Mk);
336 
337  // kaon's potential coefficient
338  // V = coeff_kaon * nucleus_density
339  G4double coeff_kaon = -2.*pi/mu * (1. + Mk/theM) * a_kaon;
340 
341  G4VNuclearDensity *theDencity;
342  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
343  else theDencity = new G4NuclearFermiDensity(theA, theZ);
344 
345  // GetDencity() accepts only G4ThreeVector so build it:
346  G4ThreeVector aPosition(0.0, 0.0, radius);
347  G4double density = theDencity->GetDensity(aPosition);
348  delete theDencity;
349 
350  return coeff_kaon * density;
351  */
352 
353  return 0.0;
354 }
G4double G4RKFieldIntegrator::GetKaonPotential ( G4ThreeVector aPosition)
inlinevirtual

Implements G4FieldPropagation.

Definition at line 64 of file G4RKFieldIntegrator.hh.

64 {return GetKaonPotential(aPosition.mag());}
G4double GetKaonPotential(G4double radius)
double mag() const

Here is the call graph for this function:

Here is the caller graph for this function:

G4double G4RKFieldIntegrator::GetNeutronPotential ( G4double  radius)
virtual

Implements G4FieldPropagation.

Definition at line 239 of file G4RKFieldIntegrator.cc.

240 {
241  /*
242  const G4double Mn = 939.56563 * MeV; // mass of nuetron
243 
244  G4VNuclearDensity *theDencity;
245  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
246  else theDencity = new G4NuclearFermiDensity(theA, theZ);
247 
248  // GetDencity() accepts only G4ThreeVector so build it:
249  G4ThreeVector aPosition(0.0, 0.0, radius);
250  G4double density = theDencity->GetDensity(aPosition);
251  delete theDencity;
252 
253  G4FermiMomentum *fm = new G4FermiMomentum();
254  fm->Init(theA, theZ);
255  G4double fermiMomentum = fm->GetFermiMomentum(density);
256  delete fm;
257 
258  return sqr(fermiMomentum)/(2 * Mn)
259  + G4CreateNucleus::GetBindingEnergy(theZ, theA)/theA;
260  //+ G4NucleiProperties::GetBindingEnergy(theZ, theA)/theA;
261  */
262 
263  return 0.0;
264 }
G4double G4RKFieldIntegrator::GetNeutronPotential ( G4ThreeVector aPosition)
inlinevirtual

Implements G4FieldPropagation.

Definition at line 55 of file G4RKFieldIntegrator.hh.

55 {return GetNeutronPotential(aPosition.mag());}
G4double GetNeutronPotential(G4double radius)
double mag() const

Here is the call graph for this function:

Here is the caller graph for this function:

G4double G4RKFieldIntegrator::GetPionPotential ( G4double  radius)
virtual

Implements G4FieldPropagation.

Definition at line 356 of file G4RKFieldIntegrator.cc.

357 {
358  /*
359  //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
360  G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
361  + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
362  + G4CreateNucleus::GetBindingEnergy(theZ, theA);
363 
364  const G4double Mpi = 139. * MeV; // mass of "pion"
365  G4double mu = (theM * Mpi)/(theM + Mpi);
366 
367  // pion's potential coefficient
368  // V = coeff_pion * nucleus_density
369  G4double coeff_pion = -2.*pi/mu * (1. + Mpi) * a_pion;
370 
371  G4VNuclearDensity *theDencity;
372  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
373  else theDencity = new G4NuclearFermiDensity(theA, theZ);
374 
375  // GetDencity() accepts only G4ThreeVector so build it:
376  G4ThreeVector aPosition(0.0, 0.0, radius);
377  G4double density = theDencity->GetDensity(aPosition);
378  delete theDencity;
379 
380  return coeff_pion * density;
381  */
382 
383  return 0.0;
384 }
G4double G4RKFieldIntegrator::GetPionPotential ( G4ThreeVector aPosition)
inlinevirtual

Implements G4FieldPropagation.

Definition at line 67 of file G4RKFieldIntegrator.hh.

67 {return GetPionPotential(aPosition.mag());}
G4double GetPionPotential(G4double radius)
double mag() const

Here is the call graph for this function:

Here is the caller graph for this function:

G4double G4RKFieldIntegrator::GetProtonPotential ( G4double  radius)
virtual

Implements G4FieldPropagation.

Definition at line 266 of file G4RKFieldIntegrator.cc.

267 {
268  /*
269  // calculate Coulomb barrier value
270  G4double theCoulombBarrier = coulomb * theZ/(1. + G4Pow::GetInstance()->Z13(theA));
271  const G4double Mp = 938.27231 * MeV; // mass of proton
272 
273  G4VNuclearDensity *theDencity;
274  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
275  else theDencity = new G4NuclearFermiDensity(theA, theZ);
276 
277  // GetDencity() accepts only G4ThreeVector so build it:
278  G4ThreeVector aPosition(0.0, 0.0, radius);
279  G4double density = theDencity->GetDensity(aPosition);
280  delete theDencity;
281 
282  G4FermiMomentum *fm = new G4FermiMomentum();
283  fm->Init(theA, theZ);
284  G4double fermiMomentum = fm->GetFermiMomentum(density);
285  delete fm;
286 
287  return sqr(fermiMomentum)/ (2 * Mp)
288  + G4CreateNucleus::GetBindingEnergy(theZ, theA)/theA;
289  //+ G4NucleiProperties::GetBindingEnergy(theZ, theA)/theA
290  + theCoulombBarrier;
291  */
292 
293  return 0.0;
294 }
G4double G4RKFieldIntegrator::GetProtonPotential ( G4ThreeVector aPosition)
inlinevirtual

Implements G4FieldPropagation.

Definition at line 58 of file G4RKFieldIntegrator.hh.

58 {return GetProtonPotential(aPosition.mag());}
G4double GetProtonPotential(G4double radius)
double mag() const

Here is the call graph for this function:

Here is the caller graph for this function:

void G4RKFieldIntegrator::Init ( G4int  z,
G4int  a 
)
inlinevirtual

Implements G4FieldPropagation.

Definition at line 51 of file G4RKFieldIntegrator.hh.

51 {theZ = z; theA = a;} // prepare potentials' functions
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
tuple z
Definition: test.py:28
int G4RKFieldIntegrator::operator!= ( const G4RKFieldIntegrator ) const
inline

Definition at line 43 of file G4RKFieldIntegrator.hh.

43 {return 1;}
const G4RKFieldIntegrator& G4RKFieldIntegrator::operator= ( const G4RKFieldIntegrator )
inline

Definition at line 40 of file G4RKFieldIntegrator.hh.

40 {return *this;}
int G4RKFieldIntegrator::operator== ( const G4RKFieldIntegrator ) const
inline

Definition at line 42 of file G4RKFieldIntegrator.hh.

42 {return 1;}
void G4RKFieldIntegrator::Transport ( G4KineticTrackVector theActive,
const G4KineticTrackVector theSpectators,
G4double  theTimeStep 
)
virtual

Implements G4FieldPropagation.

Definition at line 45 of file G4RKFieldIntegrator.cc.

46 {
47  (void)theActive;
48  (void)theSpectators;
49  (void)theTimeStep;
50 }
typedef void(XMLCALL *XML_ElementDeclHandler)(void *userData

Here is the call graph for this function:


The documentation for this class was generated from the following files: