285   if (verboseLevel > 1) {
 
  286     G4cout << 
"Calling SampleSecondaries() of G4LivermoreGammaConversionModelRC"  
  302   if (photonEnergy < smallEnergy )
 
  304       epsilon = epsilon0Local + (0.5 - epsilon0Local) * 
G4UniformRand();
 
  307       electronTotEnergy = (1. - 
epsilon) * photonEnergy;
 
  308       positronTotEnergy = epsilon * photonEnergy;
 
  312       positronTotEnergy = (1. - 
epsilon) * photonEnergy;
 
  313       electronTotEnergy = epsilon * photonEnergy;
 
  325       G4cout << 
"G4LivermoreGammaConversionModelRC::SampleSecondaries - element = 0"  
  332       G4cout << 
"G4LivermoreGammaConversionModelRC::SampleSecondaries - ionisation = 0"  
  339       if (photonEnergy > 50. * 
MeV) fZ += 8. * (element->
GetfCoulomb());
 
  347       G4double epsilon1 = 0.5 - 0.5 * std::sqrt(1. - screenMin / screenMax) ;
 
  349       G4double epsilonRange = 0.5 - epsilonMin ;
 
  355       G4double f10 = ScreenFunction1(screenMin) - fZ;
 
  356       G4double f20 = ScreenFunction2(screenMin) - fZ;
 
  362       G4double a=393.3750918, 
b=115.3070201, 
c=810.6428451, d=19.96497475, e=1016.874592, f=1.936685510,
 
  363     gLocal=751.2140962, h=0.099751048, i=299.9466339, j=0.002057250, k=49.81034926;
 
  364       G4double aa=-18.6371131, 
bb=-1729.95248, cc=9450.971186, dd=106336.0145, ee=55143.09287, ff=-117602.840,
 
  365     gg=-721455.467, hh=693957.8635, ii=156266.1085, jj=533209.9347;
 
  367       G4double logepsMin = log(epsilonMin);
 
  368       G4double NormaRC = a + 
b*logepsMin + 
c/logepsMin + d*pow(logepsMin,2.) + e/pow(logepsMin,2.) + f*pow(logepsMin,3.) +
 
  369     gLocal/pow(logepsMin,3.) + h*pow(logepsMin,4.) + i/pow(logepsMin,4.) + j*pow(logepsMin,5.) +
 
  372       G4double HardPhotonThreshold = 0.08;
 
  373       G4double r1, r2, r3, beta=0, gbeta, sigt = 582.068, sigh, rejet;
 
  378       sigh = 1028.58*
G4Exp(-HardPhotonThreshold/0.09033) + 136.63; 
 
  381       if (r1 > 1.- sigh/sigt) {
 
  386           beta = (-2./11.)*log(
G4Exp(-0.08*11./2.)-r3*11./(2.*cg));
 
  387           gbeta = 
G4Exp(-11.*beta/2.);
 
  388           rejet = fbeta(beta)/(8000.*gbeta);
 
  390     HardPhotonEnergy = beta * photonEnergy;
 
  393         HardPhotonEnergy = 0.;
 
  396       photonEnergy -= HardPhotonEnergy;
 
  404           epsilon = 0.5 - epsilonRange * std::pow(
G4UniformRand(), 0.333333) ;
 
  405           screen = screenFactor / (epsilon * (1. - 
epsilon));
 
  406           gReject = (ScreenFunction1(screen) - fZ) / f10 ;
 
  411           screen = screenFactor / (epsilon * (1 - 
epsilon));
 
  412           gReject = (ScreenFunction2(screen) - fZ) / f20 ;
 
  421       G4double deltaP_R1 = 1. + (a + 
b*logepsilon + 
c/logepsilon + d*pow(logepsilon,2.) + e/pow(logepsilon,2.) +
 
  422                      f*pow(logepsilon,3.) + gLocal/pow(logepsilon,3.) + h*pow(logepsilon,4.) + i/pow(logepsilon,4.) +
 
  423                      j*pow(logepsilon,5.) + k/pow(logepsilon,5.))/100.;
 
  424       G4double deltaP_R2 = 1.+((aa + cc*logepsilon +  ee*pow(logepsilon,2.) + gg*pow(logepsilon,3.) + ii*pow(logepsilon,4.))
 
  425                    / (1. + 
bb*logepsilon + dd*pow(logepsilon,2.) + ff*pow(logepsilon,3.) + hh*pow(logepsilon,4.)
 
  426                       + jj*pow(logepsilon,5.) ))/100.;
 
  430           Rechazo = deltaP_R1/NormaRC;
 
  434           Rechazo = deltaP_R2/NormaRC;
 
  440       electronTotEnergy = (1. - 
epsilon) * photonEnergy;
 
  441       positronTotEnergy = epsilon * photonEnergy;
 
  471   G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
 
  472   G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
 
  482   electronDirection.rotateUz(photonDirection);
 
  492   positronDirection.rotateUz(photonDirection);   
 
  499   fvect->push_back(particle1);
 
  500   fvect->push_back(particle2);
 
  502   if (HardPhotonEnergy > 0.)
 
  506       G4double dxHardP= std::sin(thetaHardPhoton)*std::cos(phi);
 
  507       G4double dyHardP= std::sin(thetaHardPhoton)*std::sin(phi);
 
  508       G4double dzHardP =std::cos(thetaHardPhoton);
 
  510       G4ThreeVector hardPhotonDirection (dxHardP, dyHardP, dzHardP);
 
  511       hardPhotonDirection.rotateUz(photonDirection);
 
  515       fvect->push_back(particle3);
 
G4double GetKineticEnergy() const 
 
std::vector< ExP01TrackerHit * > a
 
G4double GetfCoulomb() const 
 
G4ParticleDefinition * GetDefinition() const 
 
static constexpr double twopi
 
G4GLOB_DLL std::ostream G4cout
 
const G4ThreeVector & GetMomentumDirection() const 
 
G4double GetlogZ3() const 
 
G4double G4Log(G4double x)
 
G4double G4Exp(G4double initial_x)
Exponential Function double precision. 
 
static G4Positron * Positron()
 
T max(const T t1, const T t2)
brief Return the largest of the two arguments 
 
G4IonisParamElm * GetIonisation() const 
 
T min(const T t1, const T t2)
brief Return the smallest of the two arguments 
 
static G4Electron * Electron()
 
void SetProposedKineticEnergy(G4double proposedKinEnergy)
 
static constexpr double MeV
 
void ProposeTrackStatus(G4TrackStatus status)
 
double epsilon(double density, double temperature)
 
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)