Geant4  10.03.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4INCL::CoulombNone Class Reference

#include <G4INCLCoulombNone.hh>

Inheritance diagram for G4INCL::CoulombNone:
Collaboration diagram for G4INCL::CoulombNone:

Public Member Functions

 CoulombNone ()
 
virtual ~CoulombNone ()
 
ParticleEntryAvatarbringToSurface (Particle *const p, Nucleus *const n) const
 Position the particle on the surface of the nucleus. More...
 
IAvatarList bringToSurface (Cluster *const c, Nucleus *const n) const
 Position the cluster on the surface of the nucleus. More...
 
void distortOut (ParticleList const &, Nucleus const *const ) const
 Modify the momenta of the outgoing particles. More...
 
G4double maxImpactParameter (ParticleSpecies const &p, const G4double, Nucleus const *const n) const
 Return the maximum impact parameter for Coulomb-distorted trajectories. More...
 
- Public Member Functions inherited from G4INCL::ICoulomb
 ICoulomb ()
 
virtual ~ICoulomb ()
 

Detailed Description

Definition at line 55 of file G4INCLCoulombNone.hh.

Constructor & Destructor Documentation

G4INCL::CoulombNone::CoulombNone ( )
inline

Definition at line 58 of file G4INCLCoulombNone.hh.

58 {}
virtual G4INCL::CoulombNone::~CoulombNone ( )
inlinevirtual

Definition at line 59 of file G4INCLCoulombNone.hh.

59 {}

Member Function Documentation

ParticleEntryAvatar * G4INCL::CoulombNone::bringToSurface ( Particle *const  p,
Nucleus *const  n 
) const
virtual

Position the particle on the surface of the nucleus.

This method does not perform any distortion.

Parameters
pincoming particle
ndistorting nucleus

Implements G4INCL::ICoulomb.

Definition at line 50 of file G4INCLCoulombNone.cc.

50  {
51  Intersection intersection = IntersectionFactory::getEarlierTrajectoryIntersection(p->getPosition(), p->getPropagationVelocity(), n->getUniverseRadius());
52  if(intersection.exists) { // If the particle enters the nucleus
53  p->setPosition(intersection.position);
54  return new ParticleEntryAvatar(0.0, n, p);
55  } else // If the particle does NOT enter the nucleus
56  return NULL;
57  }
const char * p
Definition: xmltok.h:285
Intersection getEarlierTrajectoryIntersection(const ThreeVector &x0, const ThreeVector &p, const G4double r)
Compute the first intersection of a straight particle trajectory with a sphere.
const G4int n

Here is the call graph for this function:

Here is the caller graph for this function:

IAvatarList G4INCL::CoulombNone::bringToSurface ( Cluster *const  c,
Nucleus *const  n 
) const
virtual

Position the cluster on the surface of the nucleus.

This method does not perform any distortion.

Parameters
cincoming cluster
ndistorting nucleus

Implements G4INCL::ICoulomb.

Definition at line 59 of file G4INCLCoulombNone.cc.

59  {
60  // The avatar list that we will return
61  IAvatarList theAvatarList;
62 
63  // Loop over the particles in the cluster
64  ParticleList const &projectiles = c->getParticles();
65  std::list<Intersection> theIntersections;
66  G4double theFirstEntryTime = 1E+60; // a large time
67  G4int theFirstID = 0;
68  for(ParticleIter p=projectiles.begin(), e=projectiles.end(); p!=e; ++p) {
69  // Check if the particle enters the nucleus
71  (*p)->getPosition(),
72  (*p)->getPropagationVelocity(),
73  n->getUniverseRadius()));
74  // Store the intersections
75  theIntersections.push_back(intersection);
76  if(intersection.exists) {
77  // Position the particle at the entry point
78  (*p)->setPosition(intersection.position);
79 
80  // Keep track of the first entering particle
81  if(intersection.time < theFirstEntryTime) {
82  theFirstEntryTime = intersection.time;
83  theFirstID = (*p)->getID();
84  }
85  }
86  }
87 
88  std::list<Intersection>::const_iterator intIter = theIntersections.begin();
89  for(ParticleIter p=projectiles.begin(), e=projectiles.end(); p!=e; ++p, ++intIter) {
90 
91  if((*intIter).exists) {
92  // If the particle enters the nucleus, generate a ParticleEntryAvatar
93  // for it and add it to the list of avatars that we will return
94  if((*p)->getID() == theFirstID) {
95  // The first particle always enters exactly at t=0 (in order to
96  // avoid negative entry times due to rounding)
97  theAvatarList.push_back(new ParticleEntryAvatar(0.0, n, *p));
98  } else
99  theAvatarList.push_back(new ParticleEntryAvatar(intIter->time - theFirstEntryTime, n, *p));
100  }
101 
102  }
103 
104  return theAvatarList;
105  }
const char * p
Definition: xmltok.h:285
int G4int
Definition: G4Types.hh:78
Intersection getEarlierTrajectoryIntersection(const ThreeVector &x0, const ThreeVector &p, const G4double r)
Compute the first intersection of a straight particle trajectory with a sphere.
UnorderedVector< IAvatar * > IAvatarList
const G4int n
double G4double
Definition: G4Types.hh:76
tuple c
Definition: test.py:13
ParticleList::const_iterator ParticleIter

Here is the call graph for this function:

void G4INCL::CoulombNone::distortOut ( ParticleList const &  ,
Nucleus const *  const 
) const
inlinevirtual

Modify the momenta of the outgoing particles.

This method does not perform any distortion.

Implements G4INCL::ICoulomb.

Definition at line 83 of file G4INCLCoulombNone.hh.

83 {}
G4double G4INCL::CoulombNone::maxImpactParameter ( ParticleSpecies const &  p,
const G4double  ,
Nucleus const *const  n 
) const
inlinevirtual

Return the maximum impact parameter for Coulomb-distorted trajectories.

Implements G4INCL::ICoulomb.

Definition at line 87 of file G4INCLCoulombNone.hh.

88  {
89  if(p.theType == Composite)
90  return 2.*ParticleTable::getLargestNuclearRadius(p.theA, p.theZ)
91  + n->getUniverseRadius();
92  else
93  return n->getUniverseRadius();
94  }
const char * p
Definition: xmltok.h:285
G4double getLargestNuclearRadius(const G4int A, const G4int Z)
const G4int n

Here is the call graph for this function:


The documentation for this class was generated from the following files: