Geant4  10.03.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
ExExChPhysListEmStandardSS Class Reference

#include <ExExChPhysListEmStandardSS.hh>

Inheritance diagram for ExExChPhysListEmStandardSS:
Collaboration diagram for ExExChPhysListEmStandardSS:

Public Member Functions

 ExExChPhysListEmStandardSS (const G4String &name="standardSS")
 
 ~ExExChPhysListEmStandardSS ()
 
virtual void ConstructParticle ()
 
virtual void ConstructProcess ()
 
- Public Member Functions inherited from G4VPhysicsConstructor
 G4VPhysicsConstructor (const G4String &="")
 
 G4VPhysicsConstructor (const G4String &name, G4int physics_type)
 
virtual ~G4VPhysicsConstructor ()
 
void SetPhysicsName (const G4String &="")
 
const G4StringGetPhysicsName () const
 
void SetPhysicsType (G4int)
 
G4int GetPhysicsType () const
 
void SetVerboseLevel (G4int value)
 
G4int GetVerboseLevel () const
 
G4int GetInstanceID () const
 

Additional Inherited Members

- Static Public Member Functions inherited from G4VPhysicsConstructor
static const G4VPCManagerGetSubInstanceManager ()
 
- Protected Member Functions inherited from G4VPhysicsConstructor
G4bool RegisterProcess (G4VProcess *process, G4ParticleDefinition *particle)
 
G4ParticleTable::G4PTblDicIteratorGetParticleIterator () const
 
- Protected Attributes inherited from G4VPhysicsConstructor
G4int verboseLevel
 
G4String namePhysics
 
G4int typePhysics
 
G4ParticleTabletheParticleTable
 
G4int g4vpcInstanceID
 
- Static Protected Attributes inherited from G4VPhysicsConstructor
static G4RUN_DLL G4VPCManager subInstanceManager
 

Detailed Description

Definition at line 38 of file ExExChPhysListEmStandardSS.hh.

Constructor & Destructor Documentation

ExExChPhysListEmStandardSS::ExExChPhysListEmStandardSS ( const G4String name = "standardSS")

Definition at line 84 of file ExExChPhysListEmStandardSS.cc.

87 }
G4VPhysicsConstructor(const G4String &="")
ExExChPhysListEmStandardSS::~ExExChPhysListEmStandardSS ( )

Definition at line 91 of file ExExChPhysListEmStandardSS.cc.

92 {}

Member Function Documentation

virtual void ExExChPhysListEmStandardSS::ConstructParticle ( void  )
inlinevirtual

Implements G4VPhysicsConstructor.

Definition at line 46 of file ExExChPhysListEmStandardSS.hh.

46 {};
void ExExChPhysListEmStandardSS::ConstructProcess ( void  )
virtual

Implements G4VPhysicsConstructor.

Definition at line 96 of file ExExChPhysListEmStandardSS.cc.

97 {
99 
100  // Add standard EM Processes
101  //
103  particleIterator->reset();
104  while( (*particleIterator)() ){
105  G4ParticleDefinition* particle = particleIterator->value();
106  G4String particleName = particle->GetParticleName();
107 
108  if (particleName == "gamma") {
109  //G4cout << particleName << G4endl;
110  // Compton scattering
112  cs->SetEmModel(new G4KleinNishinaModel(),1);
113  G4VEmModel* theLowEPComptonModel = new G4LowEPComptonModel();
114  theLowEPComptonModel->SetHighEnergyLimit(20*MeV);
115  cs->AddEmModel(0, theLowEPComptonModel);
116  ph->RegisterProcess(cs, particle);
117 
118  // Photoelectric
120  G4VEmModel* theLivermorePEModel =
122  theLivermorePEModel->SetHighEnergyLimit(10*GeV);
123  pe->SetEmModel(theLivermorePEModel,1);
124  ph->RegisterProcess(pe, particle);
125 
126  // Gamma conversion
128  G4VEmModel* thePenelopeGCModel =
130  thePenelopeGCModel->SetHighEnergyLimit(1*GeV);
131  gc->SetEmModel(thePenelopeGCModel,1);
132  ph->RegisterProcess(gc, particle);
133 
134  // Rayleigh scattering
135  ph->RegisterProcess(new G4RayleighScattering(), particle);
136  } else if (particleName == "e-") {
137 
138  //G4cout << particleName << G4endl;
139  // ionisation
140  G4eIonisation* eIoni = new G4eIonisation();
141  eIoni->SetStepFunction(0.1, 100*um);
142  G4VEmModel* theIoniPenelope = new G4PenelopeIonisationModel();
143  theIoniPenelope->SetHighEnergyLimit(0.1*MeV);
144  eIoni->AddEmModel(0, theIoniPenelope, new G4UniversalFluctuation());
145 
146  XWrapperContinuousDiscreteProcess *eIoni_wrapper =
148  eIoni_wrapper->RegisterProcess(eIoni,-1);
149  ph->RegisterProcess(eIoni_wrapper, particle);
150 
151  // bremsstrahlung
152  G4eBremsstrahlung* eBrem = new G4eBremsstrahlung();
153  XWrapperContinuousDiscreteProcess *eBrem_wrapper =
155  eBrem_wrapper->RegisterProcess(eBrem,-1);
156  ph->RegisterProcess(eBrem_wrapper, particle);
157 
158  // coulomb scattering
160  ecs->SetBuildTableFlag(false);
163  ecsmodel->SetPolarAngleLimit(0.0);
164  ecs->AddEmModel(0, ecsmodel);
165  XWrapperDiscreteProcess *ecs_wrapper =
167  ecs_wrapper->RegisterProcess(ecs,1,1);
168  ph->RegisterProcess(ecs_wrapper, particle);
169 
170 
171  // multiple scattering
173  XWrapperContinuousDiscreteProcess *ems_wrapper =
175  ems_wrapper->RegisterProcess(ems,0,2);
176  ph->RegisterProcess(ems_wrapper, particle);
177 
178  } else if (particleName == "e+") {
179  //G4cout << particleName << G4endl;
180  // ionisation
181  G4eIonisation* eIoni = new G4eIonisation();
182  eIoni->SetStepFunction(0.2, 100*um);
183  G4VEmModel* theIoniPenelope = new G4PenelopeIonisationModel();
184  theIoniPenelope->SetHighEnergyLimit(0.1*MeV);
185  eIoni->AddEmModel(0, theIoniPenelope, new G4UniversalFluctuation());
186 
187  XWrapperContinuousDiscreteProcess *eIoni_wrapper =
189  eIoni_wrapper->RegisterProcess(eIoni,-1);
190  ph->RegisterProcess(eIoni_wrapper, particle);
191 
192  // bremsstrahlung
193  G4eBremsstrahlung* eBrem = new G4eBremsstrahlung();
194  XWrapperContinuousDiscreteProcess *eBrem_wrapper =
196  eBrem_wrapper->RegisterProcess(eBrem,-1);
197  ph->RegisterProcess(eBrem_wrapper, particle);
198 
199  // annihilation at rest and in flight
200  G4eplusAnnihilation* eplusAnn = new G4eplusAnnihilation();
201  XWrapperDiscreteProcess *eplusAnn_wrapper =
203  eplusAnn_wrapper->RegisterProcess(eplusAnn,-1);
204  ph->RegisterProcess(eplusAnn_wrapper, particle);
205 
206  // coulomb scattering
208  ecs->SetBuildTableFlag(false);
211  ecsmodel->SetPolarAngleLimit(0.0);
212  ecs->AddEmModel(0, ecsmodel);
213  XWrapperDiscreteProcess *ecs_wrapper =
215  ecs_wrapper->RegisterProcess(ecs,1,1);
216  ph->RegisterProcess(ecs_wrapper, particle);
217 
218  // multiple scattering
220  XWrapperContinuousDiscreteProcess *ems_wrapper =
222  ems_wrapper->RegisterProcess(ems,0,2);
223  ph->RegisterProcess(ems_wrapper, particle);
224 
225  } else if ((particleName == "mu+" ||
226  particleName == "mu-")) {
227  //G4cout << particleName << G4endl;
228  // ionisation
229  G4MuIonisation* muIoni = new G4MuIonisation();
230  muIoni->SetStepFunction(0.2, 50*um);
231  XWrapperContinuousDiscreteProcess *muIoni_wrapper =
233  muIoni_wrapper->RegisterProcess(muIoni,-1);
234  ph->RegisterProcess(muIoni_wrapper, particle);
235 
236  // bremsstrahlung
237  G4MuBremsstrahlung* muBrem = new G4MuBremsstrahlung();
238  XWrapperContinuousDiscreteProcess *muBrem_wrapper =
240  muBrem_wrapper->RegisterProcess(muBrem,-1);
241  ph->RegisterProcess(muBrem_wrapper, particle);
242 
243  // pair production
244  G4MuPairProduction* muPair = new G4MuPairProduction();
245  XWrapperContinuousDiscreteProcess* muPair_wrapper =
247  muPair_wrapper->RegisterProcess(muPair,-1);
248  ph->RegisterProcess(muPair_wrapper, particle);
249 
250  // coulomb scattering
252  ecs->SetBuildTableFlag(false);
253  G4eCoulombScatteringModel* ecsmodel =
255  ecsmodel->SetPolarAngleLimit(0.0);
256  ecs->AddEmModel(0, ecsmodel);
257  XWrapperDiscreteProcess *ecs_wrapper =
259  ecs_wrapper->RegisterProcess(ecs,1,1);
260  ph->RegisterProcess(ecs_wrapper, particle);
261 
262  // multiple scattering
263  XWrapperContinuousDiscreteProcess *mums_wrapper =
265  mums_wrapper->RegisterProcess(new G4MuMultipleScattering(),0,2);
266  ph->RegisterProcess(mums_wrapper, particle);
267 
268  } else if ((particleName == "alpha" || particleName == "He3") ) {
269  //G4cout << particleName << G4endl;
270  // ionisation
271  G4ionIonisation* ionIoni = new G4ionIonisation();
272  ionIoni->SetStepFunction(0.1, 10*um);
273  XWrapperContinuousDiscreteProcess *ionIoni_wrapper =
275  ionIoni_wrapper->RegisterProcess(ionIoni,-1);
276  ph->RegisterProcess(ionIoni_wrapper, particle);
277 
278  // coulomb scattering
280  ecs->SetBuildTableFlag(false);
281  XWrapperDiscreteProcess *ecs_wrapper =
283  ecs_wrapper->RegisterProcess(ecs,1,1);
284  ph->RegisterProcess(ecs_wrapper, particle);
285 
286 
287  // multiple scattering
288  XWrapperContinuousDiscreteProcess *hms_wrapper =
290  hms_wrapper->RegisterProcess(new G4hMultipleScattering(),0,2);
291  ph->RegisterProcess(hms_wrapper, particle);
292 
293  } else if( particleName == "proton" ||
294  particleName == "pi-" ||
295  particleName == "pi+" ) {
296 
297  //G4cout << particleName << G4endl;
298  // ionisation
299  G4hIonisation* hIoni = new G4hIonisation();
300  hIoni->SetStepFunction(0.1, 20*um);
301  XWrapperContinuousDiscreteProcess *hIoni_wrapper =
303  hIoni_wrapper->RegisterProcess(hIoni,-1);
304  ph->RegisterProcess(hIoni_wrapper, particle);
305 
306  // bremsstrahlung
307  G4hBremsstrahlung* hBrem = new G4hBremsstrahlung();
308  XWrapperContinuousDiscreteProcess *hBrem_wrapper =
310  hBrem_wrapper->RegisterProcess(hBrem,-1);
311  ph->RegisterProcess(hBrem_wrapper, particle);
312 
313  // pair production
314  G4hPairProduction* hPair = new G4hPairProduction();
315  XWrapperContinuousDiscreteProcess* hPair_wrapper =
317  hPair_wrapper->RegisterProcess(hPair,-1);
318  ph->RegisterProcess(hPair_wrapper, particle);
319 
320  // coulomb scattering
322  ecs->SetBuildTableFlag(false);
323  XWrapperDiscreteProcess *ecs_wrapper =
325  ecs_wrapper->RegisterProcess(ecs,1,1);
326  ph->RegisterProcess(ecs_wrapper, particle);
327 
328  // multiple scattering
329  XWrapperContinuousDiscreteProcess *hms_wrapper =
331  hms_wrapper->RegisterProcess(new G4hMultipleScattering(),0,2);
332  ph->RegisterProcess(hms_wrapper, particle);
333 
334  } else if (particleName == "GenericIon" ) {
335  //G4cout << particleName << G4endl;
336  // ionisation
337  G4ionIonisation* ionIoni = new G4ionIonisation();
338  ionIoni->SetStepFunction(0.1, 1*um);
339  XWrapperContinuousDiscreteProcess *ionIoni_wrapper =
341  ionIoni_wrapper->RegisterProcess(ionIoni,-1);
342  ph->RegisterProcess(ionIoni_wrapper, particle);
343 
344  // coulomb scattering
346  ecs->SetBuildTableFlag(false);
347  XWrapperDiscreteProcess *ecs_wrapper =
349  ecs_wrapper->RegisterProcess(ecs,1,1);
350  ph->RegisterProcess(ecs_wrapper, particle);
351 
352  // multiple scattering
353  XWrapperContinuousDiscreteProcess *hms_wrapper =
355  hms_wrapper->RegisterProcess(new G4hMultipleScattering(),0,2);
356  ph->RegisterProcess(hms_wrapper, particle);
357 
358  } else if ((!particle->IsShortLived()) &&
359  (particle->GetPDGCharge() != 0.0) &&
360  (particle->GetParticleName() != "chargedgeantino") ) {
361  //G4cout << particleName << G4endl;
362  //all others charged particles except geantino
363 
364  // ionisation
365  G4hIonisation* hIoni = new G4hIonisation();
366  XWrapperContinuousDiscreteProcess *hIoni_wrapper =
368  hIoni_wrapper->RegisterProcess(hIoni,-1);
369  ph->RegisterProcess(hIoni_wrapper, particle);
370 
371  // coulomb scattering
373  ecs->SetBuildTableFlag(false);
374  XWrapperDiscreteProcess *ecs_wrapper =
376  ecs_wrapper->RegisterProcess(ecs,1,1);
377  ph->RegisterProcess(ecs_wrapper, particle);
378 
379  // multiple scattering
380  XWrapperContinuousDiscreteProcess *hms_wrapper =
382  hms_wrapper->RegisterProcess(new G4hMultipleScattering(),0,2);
383  ph->RegisterProcess(hms_wrapper, particle);
384 
385  }
386  }
387 
388  // Em options
389  //
390  // Main options and setting parameters are shown here.
391  // Several of them have default values.
392  //
393  G4EmProcessOptions emOptions;
394 
395  //physics tables
396  //
397  emOptions.SetMinEnergy(10*eV);
398  emOptions.SetMaxEnergy(10*TeV);
399  emOptions.SetDEDXBinning(12*20);
400  emOptions.SetLambdaBinning(12*20);
401 
402  // scattering
403  emOptions.SetPolarAngleLimit(0.0);
404 
405  // Deexcitation
408  de->SetFluo(true);
409 }
void RegisterProcess(G4VContinuousDiscreteProcess *)
static G4LossTableManager * Instance()
void SetBuildTableFlag(G4bool val)
void SetMinEnergy(G4double val)
void SetStepFunction(G4double v1, G4double v2, G4bool lock=true)
const G4String & GetParticleName() const
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:732
static constexpr double TeV
Definition: G4SIunits.hh:218
void SetDEDXBinning(G4int val)
void AddEmModel(G4int, G4VEmModel *, G4VEmFluctuationModel *fluc=0, const G4Region *region=nullptr)
G4ParticleTable::G4PTblDicIterator * GetParticleIterator() const
void SetEmModel(G4VEmModel *, G4int index=1)
static constexpr double um
Definition: G4SIunits.hh:113
void SetLambdaBinning(G4int val)
G4bool RegisterProcess(G4VProcess *process, G4ParticleDefinition *particle)
static constexpr double eV
Definition: G4SIunits.hh:215
void SetMaxEnergy(G4double val)
void AddEmModel(G4int, G4VEmModel *, const G4Region *region=nullptr)
static G4PhysicsListHelper * GetPhysicsListHelper()
static constexpr double GeV
Definition: G4SIunits.hh:217
std::vector< G4InuclElementaryParticle >::iterator particleIterator
Definition: G4BigBanger.cc:65
static constexpr double MeV
Definition: G4SIunits.hh:214
void RegisterProcess(G4VDiscreteProcess *)
G4double GetPDGCharge() const
void SetAtomDeexcitation(G4VAtomDeexcitation *)
void SetPolarAngleLimit(G4double)
Definition: G4VEmModel.hh:767
void SetPolarAngleLimit(G4double val)

Here is the call graph for this function:


The documentation for this class was generated from the following files: