71 std::vector<G4double>* G4mplIonisationWithDeltaModel::dedx0 = 
nullptr;
 
   80   beta2lim(betalim*betalim),
 
   81   bg2lim(beta2lim*(1.0 + beta2lim))
 
   84   if(nmpl > 6)      { nmpl = 6; }
 
   85   else if(nmpl < 1) { nmpl = 1; }
 
   87   chargeSquare = magCharge * magCharge;
 
   88   dedxlim = 45.*nmpl*nmpl*
GeV*
cm2/
g;
 
   89   fParticleChange = 
nullptr;
 
   91   G4cout << 
"### Monopole ionisation model with d-electron production, Gmag= "  
  127     if(!dedx0) { dedx0 = 
new std::vector<G4double>; }
 
  132     if(n < numOfCouples) { dedx0->resize(numOfCouples); }
 
  135     for(
G4int i=0; i<numOfCouples; ++i) {
 
  141       (*dedx0)[i] = pi_hbarc2_over_mc2*eDensity*nmpl*nmpl*
 
  159   G4double tau   = kineticEnergy / mass;
 
  173     if(beta >= betalim) {
 
  174       dedx = ComputeDEDXAhlen(material, bg2, cutEnergy);
 
  180       G4double dedx2 = ComputeDEDXAhlen(material, bg2lim, cutEnergy);
 
  185       dedx = (kapa1*dedx1 + kapa2*dedx2)/(kapa1 + kapa2);
 
  207   if(nmpl > 1) { k = 0.346; }
 
  210   const G4double B[7] = { 0.0, 0.248, 0.672, 1.022, 1.243, 1.464, 1.685}; 
 
  212   dedx += 0.5 * k - B[nmpl];
 
  219   dedx *=  pi_hbarc2_over_mc2 * eDensity * nmpl * nmpl;
 
  221   if (dedx < 0.0) { dedx = 0.; }
 
  239   if(cutEnergy < maxEnergy) {
 
  240     cross = (0.5/cutEnergy - 0.5/maxEnergy)*pi_hbarc2_over_mc2 * nmpl * nmpl;
 
  273   if(minKinEnergy >= maxKinEnergy) { 
return; }
 
  279   G4double totEnergy     = kineticEnergy + mass;
 
  280   G4double etot2         = totEnergy*totEnergy;
 
  281   G4double beta2         = kineticEnergy*(kineticEnergy + 2.0*mass)/etot2;
 
  285   G4double deltaKinEnergy = minKinEnergy*maxKinEnergy
 
  286     /(minKinEnergy*(1.0 - q) + maxKinEnergy*q);
 
  289   G4double totMomentum = totEnergy*sqrt(beta2);
 
  293                                    (deltaMomentum * totMomentum);
 
  294   if(cost > 1.0) { cost = 1.0; }
 
  296   G4double sint = sqrt((1.0 - cost)*(1.0 + cost));
 
  300   G4ThreeVector deltaDirection(sint*cos(phi),sint*sin(phi), cost);
 
  308   vdp->push_back(delta);
 
  311   kineticEnergy       -= deltaKinEnergy;
 
  312   G4ThreeVector finalP = direction*totMomentum - deltaDirection*deltaMomentum;
 
  313   finalP               = finalP.
unit();
 
  331   G4double twomeanLoss = meanLoss + meanLoss;
 
  333   if(twomeanLoss < siga) {
 
  337       x = (loss - meanLoss)/siga;
 
  344     } 
while (0.0 > loss || loss > twomeanLoss);
 
  364       * electronDensity * chargeSquare;
 
ThreeVector shoot(const G4int Ap, const G4int Af)
 
G4IonisParamMat * GetIonisation() const 
 
G4double LowEnergyLimit() const 
 
G4ParticleChangeForLoss * GetParticleChangeForLoss()
 
G4mplIonisationWithDeltaModel(G4double mCharge, const G4String &nam="mplIonisationWithDelta")
 
G4double GetKineticEnergy() const 
 
static constexpr double cm2
 
G4double HighEnergyLimit() const 
 
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
 
void SetParticle(const G4ParticleDefinition *p)
 
virtual ~G4mplIonisationWithDeltaModel()
 
G4ParticleDefinition * GetDefinition() const 
 
double B(double temperature)
 
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy) override
 
virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition *, G4double kinEnergy) override
 
static constexpr double twopi
 
void SetHighEnergyLimit(G4double)
 
const G4MaterialCutsCouple * CurrentCouple() const 
 
G4GLOB_DLL std::ostream G4cout
 
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
 
virtual G4double Dispersion(const G4Material *, const G4DynamicParticle *, G4double tmax, G4double length) override
 
size_t GetTableSize() const 
 
G4double GetElectronDensity() const 
 
const G4ThreeVector & GetMomentumDirection() const 
 
Hep3Vector & rotateUz(const Hep3Vector &)
 
static constexpr double eplus
 
void SetProposedKineticEnergy(G4double proposedKinEnergy)
 
void SetProposedMomentumDirection(const G4ThreeVector &dir)
 
virtual G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy) override
 
static const G4double emax
 
G4double G4Log(G4double x)
 
static G4ProductionCutsTable * GetProductionCutsTable()
 
G4double DensityCorrection(G4double x)
 
G4double GetPDGMass() const 
 
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const 
 
T max(const T t1, const T t2)
brief Return the largest of the two arguments 
 
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
 
T min(const T t1, const T t2)
brief Return the smallest of the two arguments 
 
static constexpr double GeV
 
G4double GetMeanExcitationEnergy() const 
 
static G4Electron * Electron()
 
static constexpr double pi
 
void SetLowEnergyLimit(G4double)
 
virtual G4double SampleFluctuations(const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmax, G4double length, G4double meanLoss) override
 
const G4Material * GetMaterial() const