56       G4cout << 
"G4RPGAntiProtonInelastic::ApplyYourself called" << 
G4endl;
 
   58       G4cout << 
"target material = " << targetMaterial->
GetName() << 
", ";
 
   69     modifiedOriginal = *originalIncident;
 
   75     G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
 
   89     p = std::sqrt( std::abs((et-amas)*(et+amas)) );
 
   98     targetParticle = *originalTarget;
 
  101     G4bool incidentHasChanged = 
false;
 
  102     G4bool targetHasChanged = 
false;
 
  103     G4bool quasiElastic = 
false;
 
  113       Cascade( vec, vecLen,
 
  114                originalIncident, currentParticle, targetParticle,
 
  115                incidentHasChanged, targetHasChanged, quasiElastic );
 
  120                       originalIncident, originalTarget, modifiedOriginal,
 
  121                       targetNucleus, currentParticle, targetParticle,
 
  122                       incidentHasChanged, targetHasChanged, quasiElastic );
 
  125                  currentParticle, targetParticle,
 
  126                  incidentHasChanged );
 
  128   delete originalTarget;
 
  133 void G4RPGAntiProtonInelastic::Cascade(
 
  139    G4bool &incidentHasChanged,
 
  156   G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
 
  157                                       targetMass*targetMass +
 
  158                                       2.0*targetMass*etOriginal );
 
  159   G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
 
  162   const G4int numMul = 1200;
 
  163   const G4int numMulA = 400;
 
  164   const G4int numSec = 60;
 
  170   G4int counter, nt=0, np=0, nneg=0, nz=0;
 
  178     for( i=0; i<numMul; ++i )protmul[i] = 0.0;
 
  179     for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
 
  181     for (np=0; np<(numSec/3); ++np ) {
 
  182       for (nneg=
std::max(0,np-1); nneg<=(np+1); ++nneg ) {
 
  183         for (nz=0; nz<numSec/3; ++nz ) {
 
  184           if (++counter < numMul ) {
 
  186             if (nt>0 && nt<=numSec ) {
 
  187               protmul[counter] = 
Pmltpc(np,nneg,nz,nt,b[0],c);
 
  188               protnorm[nt-1] += protmul[counter];
 
  195     for (i=0; i<numMul; ++i )neutmul[i] = 0.0;
 
  196     for (i=0; i<numSec; ++i )neutnorm[i] = 0.0;
 
  198     for (np=0; np<numSec/3; ++np ) {
 
  199         for( nneg=np; nneg<=(np+2); ++nneg )
 
  201           for( nz=0; nz<numSec/3; ++nz )
 
  203             if( ++counter < numMul )
 
  206               if( (nt>0) && (nt<=numSec) )
 
  208                 neutmul[counter] = 
Pmltpc(np,nneg,nz,nt,b[1],c);
 
  209                 neutnorm[nt-1] += neutmul[counter];
 
  216     for (i=0; i<numSec; ++i ) {
 
  217       if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
 
  218       if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
 
  223     for (i=0; i<numMulA; ++i )protmulA[i] = 0.0;
 
  224     for (i=0; i<numSec; ++i )protnormA[i] = 0.0;
 
  227     for (np=0; np<(numSec/3); ++np ) {
 
  229       for (nz=0; nz<numSec/3; ++nz ) {
 
  230         if ( ++counter < numMulA ) {
 
  232           if ( nt>1 && nt<=numSec ) {
 
  233             protmulA[counter] = 
Pmltpc(np,nneg,nz,nt,b[0],c);
 
  234             protnormA[nt-1] += protmulA[counter];
 
  240     for( i=0; i<numMulA; ++i )neutmulA[i] = 0.0;
 
  241     for( i=0; i<numSec; ++i )neutnormA[i] = 0.0;
 
  244     for (np=0; np<numSec/3; ++np ) {
 
  246       for (nz=0; nz<numSec/3; ++nz ) {
 
  247         if (++counter < numMulA ) {
 
  249           if ( (nt>1) && (nt<=numSec) ) {
 
  250             neutmulA[counter] = 
Pmltpc(np,nneg,nz,nt,b[1],c);
 
  251             neutnormA[nt-1] += neutmulA[counter];
 
  256     for (i=0; i<numSec; ++i) {
 
  257       if( protnormA[i] > 0.0 )protnormA[i] = 1.0/protnormA[i];
 
  258       if( neutnormA[i] > 0.0 )neutnormA[i] = 1.0/neutnormA[i];
 
  272   const G4double anhl[] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.90,
 
  273                            0.6,0.52,0.47,0.44,0.41,0.39,0.37,0.35,0.34,0.24,
 
  274                            0.19,0.15,0.12,0.10,0.09,0.07,0.06,0.05,0.0};
 
  277   if( iplab >  9 )iplab = 
G4int( pOriginal/
GeV ) + 9;
 
  278   if( iplab > 18 )iplab = 
G4int( pOriginal/
GeV/10.0 ) + 18;
 
  279   if( iplab > 27 )iplab = 28;
 
  281     if (availableEnergy <= aPiPlus->GetPDGMass()/
MeV ) {
 
  286     const G4double supp[] = {0.,0.4,0.55,0.65,0.75,0.82,0.86,0.90,0.94,0.98};
 
  305         else if( ran < wp/wt )
 
  315         if( ran < w0/(w0+wm) )
 
  327         for (np=0; np<numSec/3 && ran>=excs; ++np ) {
 
  328           for (nneg=
std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg ) {
 
  329             for (nz=0; nz<numSec/3 && ran>=excs; ++nz ) {
 
  330               if (++counter < numMul ) {
 
  332                 if ((nt>0) && (nt<=numSec) ) {
 
  334                   dum = (
pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
 
  335                   if (std::fabs(dum) < 1.0 ) {
 
  336                     if( test >= 1.0e-10 )excs += dum*
test;
 
  351         for ( np=0; np<numSec/3 && ran>=excs; ++np ) {
 
  352           for ( nneg=np; nneg<=(np+2) && ran>=excs; ++nneg ) {
 
  353             for ( nz=0; nz<numSec/3 && ran>=excs; ++nz ) {
 
  354               if ( ++counter < numMul ) {
 
  356                 if ( (nt>0) && (nt<=numSec) ) {
 
  358                   dum = (
pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
 
  359                   if ( std::fabs(dum) < 1.0 )
 
  361                     if( test >= 1.0e-10 )excs += dum*
test;
 
  387            incidentHasChanged = 
true;
 
  388            targetHasChanged = 
true;
 
  393          targetHasChanged = 
true;
 
  397          incidentHasChanged = 
true;
 
  408              targetHasChanged = 
true;
 
  413              incidentHasChanged = 
true;
 
  421            incidentHasChanged = 
true;
 
  422            targetHasChanged = 
true;
 
  428     if (centerofmassEnergy <= 2*aPiPlus->GetPDGMass()/
MeV ) {
 
  441         for( np=0; (np<numSec/3) && (ran>=excs); ++np )
 
  444           for( nz=0; (nz<numSec/3) && (ran>=excs); ++nz )
 
  446             if( ++counter < numMulA )
 
  449               if( (nt>1) && (nt<=numSec) )
 
  452                 dum = (
pi/anpn)*nt*protmulA[counter]*protnormA[nt-1]/(2.0*n*n);
 
  453                 if( std::abs(dum) < 1.0 )
 
  455                   if( test >= 1.0e-10 )excs += dum*
test;
 
  465         for( np=0; (np<numSec/3) && (ran>=excs); ++np )
 
  468           for( nz=0; (nz<numSec/3) && (ran>=excs); ++nz )
 
  470             if( ++counter < numMulA )
 
  473               if( (nt>1) && (nt<=numSec) )
 
  476                 dum = (
pi/anpn)*nt*neutmulA[counter]*neutnormA[nt-1]/(2.0*n*n);
 
  477                 if( std::fabs(dum) < 1.0 )
 
  479                   if( test >= 1.0e-10 )excs += dum*
test;
 
  493     currentParticle.
SetMass( 0.0 );
 
  499   ed << 
" While count exceeded " << 
G4endl;
 
  500   while(np + nneg + nz < 3) {   
 
G4double EvaporationEffects(G4double kineticEnergy)
 
std::ostringstream G4ExceptionDescription
 
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct ¤tParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
 
void SetKineticEnergy(const G4double en)
 
void SetMomentum(const G4double x, const G4double y, const G4double z)
 
const G4String & GetName() const 
 
void SetSide(const G4int sid)
 
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct ¤tParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
 
G4ParticleDefinition * GetDefinition() const 
 
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
void Initialize(G4int items)
 
G4DynamicParticle * ReturnTargetParticle() const 
 
const G4String & GetParticleName() const 
 
void SetStatusChange(G4HadFinalStateStatus aS)
 
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
 
const G4ParticleDefinition * GetDefinition() const 
 
void SetMass(const G4double mas)
 
G4GLOB_DLL std::ostream G4cout
 
const G4ParticleDefinition * GetDefinition() const 
 
G4double GetKineticEnergy() const 
 
static G4Proton * Proton()
 
static G4PionPlus * PionPlus()
 
void SetDefinitionAndUpdateE(const G4ParticleDefinition *aParticleDefinition)
 
static G4Neutron * Neutron()
 
const G4LorentzVector & Get4Momentum() const 
 
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
 
G4double GetKineticEnergy() const 
 
G4double G4Exp(G4double initial_x)
Exponential Function double precision. 
 
void SetEnergyChange(G4double anEnergy)
 
G4double GetPDGMass() const 
 
T max(const T t1, const T t2)
brief Return the largest of the two arguments 
 
G4double Cinema(G4double kineticEnergy)
 
T min(const T t1, const T t2)
brief Return the smallest of the two arguments 
 
static constexpr double GeV
 
G4ThreeVector GetMomentum() const 
 
G4HadFinalState theParticleChange
 
static constexpr double MeV
 
const G4Material * GetMaterial() const 
 
static constexpr double pi
 
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
 
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
 
void SetMomentumChange(const G4ThreeVector &aV)
 
static G4AntiNeutron * AntiNeutron()
 
G4double GetTotalMomentum() const 
 
G4double GetTotalEnergy() const