74   lowEnergyRecoilLimit = 100.*
keV;  
 
   75   lowEnergyLimitQ  = 0.0*
GeV;  
 
   76   lowEnergyLimitHE = 0.0*
GeV;  
 
   77   lowestEnergyLimit= 0.0*
keV;  
 
   78   plabLowLimit     = 20.0*
MeV;
 
  107   fCofAlphaCoulomb = 0.5;
 
  116   fNuclearRadius1 = fNuclearRadius2 = fNuclearRadiusSquare 
 
  117     = fRutherfordRatio = fCoulombPhase0 = fHalfRutThetaTg = fHalfRutThetaTg2 
 
  118     = fRutherfordTheta = fProfileLambda = fCofPhase = fCofFar = fCofAlphaMax 
 
  119     = fCofAlphaCoulomb = fSumSigma = fEtaRatio = fReZ = 0.0;
 
  122   fNuclearRadiusCof = 1.0;
 
  131   if ( fEnergyVector ) {
 
  132     delete fEnergyVector;
 
  136   for ( std::vector<G4PhysicsTable*>::iterator it = fAngleBank.begin();
 
  137         it != fAngleBank.end(); ++it ) {
 
  138     if ( (*it) ) (*it)->clearAndDestroy();
 
  162   for(jEl = 0 ; jEl < numOfEl; ++jEl) 
 
  164     fAtomicNumber = (*theElementTable)[jEl]->GetZ();     
 
  168     fNuclearRadius += R1;
 
  172       G4cout<<
"G4NuclNuclDiffuseElastic::Initialise() the element: " 
  173         <<(*theElementTable)[jEl]->GetName()<<
G4endl;
 
  175     fElementNumberVector.push_back(fAtomicNumber);
 
  176     fElementNameVector.push_back((*theElementTable)[jEl]->GetName());
 
  179     fAngleBank.push_back(fAngleTable);
 
  194   fParticle      = particle;
 
  195   fWaveVector    = momentum/
hbarc;
 
  222   if      (iZ == 1 && iA == 1) theDef = theProton;
 
  223   else if (iZ == 1 && iA == 2) theDef = theDeuteron;
 
  225   else if (iZ == 2 && iA == 3) theDef = 
G4He3::He3();
 
  226   else if (iZ == 2 && iA == 4) theDef = theAlpha;
 
  240   G4double cost = 1 - 0.5*std::fabs(tMand)/ptot2;
 
  242   if( cost >= 1.0 )      cost = 1.0;  
 
  243   else if( cost <= -1.0) cost = -1.0;
 
  245   G4double thetaCMS = std::acos(cost);
 
  265   fParticle      = particle;
 
  266   fWaveVector    = momentum/
hbarc;
 
  274   G4double kRt   = fWaveVector*fNuclearRadius*theta;
 
  277   if( z && (kRt > kRtC) )
 
  282     fAm         = 
CalculateAm( momentum, fZommerfeld, fAtomicNumber);
 
  309   if      (iZ == 1 && iA == 1) theDef = theProton;
 
  310   else if (iZ == 1 && iA == 2) theDef = theDeuteron;
 
  312   else if (iZ == 2 && iA == 3) theDef = 
G4He3::He3();
 
  313   else if (iZ == 2 && iA == 4) theDef = theAlpha;
 
  327   G4double cost    = 1 - 0.5*std::fabs(tMand)/ptot2;
 
  329   if( cost >= 1.0 )      cost = 1.0;  
 
  330   else if( cost <= -1.0) cost = -1.0;
 
  332   G4double thetaCMS = std::acos(cost);
 
  359   if      (iZ == 1 && iA == 1) theDef = theProton;
 
  360   else if (iZ == 1 && iA == 2) theDef = theDeuteron;
 
  362   else if (iZ == 2 && iA == 3) theDef = 
G4He3::He3();
 
  363   else if (iZ == 2 && iA == 4) theDef = theAlpha;
 
  377   G4double cost = 1 - 0.5*std::fabs(tMand)/ptot2;
 
  379   if( cost >= 1.0 )      cost = 1.0;  
 
  380   else if( cost <= -1.0) cost = -1.0;
 
  382   G4double thetaCMS = std::acos(cost);
 
  402   G4double sigma, bzero, bzero2, bonebyarg, bonebyarg2, damp, damp2;
 
  410   G4double kr    = fWaveVector*fNuclearRadius; 
 
  415   bzero2     = bzero*bzero;    
 
  419   bonebyarg2 = bonebyarg*bonebyarg;  
 
  434     diffuse = 0.63*
fermi;
 
  444   G4double kgamma    = lambda*(1.-
G4Exp(-fWaveVector*gamma/lambda));   
 
  451   G4double pikdt    = lambda*(1.-
G4Exp(-
pi*fWaveVector*diffuse*theta/lambda));   
 
  456   G4double mode2k2 = (e1*e1+e2*e2)*fWaveVector*fWaveVector;  
 
  457   G4double e2dk3t  = -2.*e2*delta*fWaveVector*fWaveVector*fWaveVector*theta;
 
  463   sigma += mode2k2*bone2 + e2dk3t*bzero*bone;
 
  464   sigma += kr2*bonebyarg2;
 
  482   G4double sigma, bzero, bzero2, bonebyarg, bonebyarg2, damp, damp2;
 
  490   G4double kr    = fWaveVector*fNuclearRadius; 
 
  495   bzero2     = bzero*bzero;    
 
  499   bonebyarg2 = bonebyarg*bonebyarg;  
 
  501   if (fParticle == theProton)
 
  503     diffuse = 0.63*
fermi;
 
  512     diffuse = 0.63*
fermi;
 
  520   G4double kgamma    = lambda*(1.-
G4Exp(-fWaveVector*gamma/lambda));   
 
  526     G4double sinHalfTheta  = std::sin(0.5*theta);
 
  527     G4double sinHalfTheta2 = sinHalfTheta*sinHalfTheta;
 
  529     kgamma += 0.5*fZommerfeld/kr/(sinHalfTheta2+fAm); 
 
  540   G4double pikdt    = lambda*(1.-
G4Exp(-
pi*fWaveVector*diffuse*theta/lambda));   
 
  547   G4double mode2k2 = (e1*e1+e2*e2)*fWaveVector*fWaveVector;  
 
  548   G4double e2dk3t  = -2.*e2*delta*fWaveVector*fWaveVector*fWaveVector*theta;
 
  553   sigma += mode2k2*bone2; 
 
  554   sigma += e2dk3t*bzero*bone;
 
  557   sigma += kr2*bonebyarg2;  
 
  575   theta = std::sqrt(alpha);
 
  579   G4double sigma, bzero, bzero2, bonebyarg, bonebyarg2, damp, damp2;
 
  587   G4double kr    = fWaveVector*fNuclearRadius; 
 
  592   bzero2     = bzero*bzero;    
 
  596   bonebyarg2 = bonebyarg*bonebyarg;  
 
  598   if (fParticle == theProton)
 
  600     diffuse = 0.63*
fermi;
 
  609     diffuse = 0.63*
fermi;
 
  617   G4double kgamma    = lambda*(1.-
G4Exp(-fWaveVector*gamma/lambda));   
 
  624     G4double sinHalfTheta2 = sinHalfTheta*sinHalfTheta;
 
  626     kgamma += 0.5*fZommerfeld/kr/(sinHalfTheta2+fAm); 
 
  637   G4double pikdt    = lambda*(1.-
G4Exp(-
pi*fWaveVector*diffuse*theta/lambda));   
 
  644   G4double mode2k2 = (e1*e1+e2*e2)*fWaveVector*fWaveVector;  
 
  645   G4double e2dk3t  = -2.*e2*delta*fWaveVector*fWaveVector*fWaveVector*theta;
 
  650   sigma += mode2k2*bone2; 
 
  651   sigma += e2dk3t*bzero*bone;
 
  654   sigma += kr2*bonebyarg2;  
 
  689   fParticle      = particle;
 
  690   fWaveVector    = momentum/
hbarc;
 
  712   G4double t     = 2*p*p*( 1 - std::cos(theta) ); 
 
  728   fParticle      = particle;
 
  729   fWaveVector    = momentum/
hbarc;
 
  734   thetaMax = 10.174/fWaveVector/fNuclearRadius;
 
  736   if (thetaMax > 
pi) thetaMax = 
pi;
 
  745   for(i = 1; i <= iMax; i++)
 
  747     theta1 = (i-1)*thetaMax/iMax; 
 
  748     theta2 = i*thetaMax/iMax;
 
  753       result = 0.5*(theta1 + theta2);
 
  757   if (i > iMax ) result = 0.5*(theta1 + theta2);
 
  763   if(result < 0.) result = 0.;
 
  764   if(result > thetaMax) result = thetaMax;
 
  779   fParticle = aParticle;
 
  781   G4double totElab = std::sqrt(m1*m1+p*p);
 
  820   G4int iMomentum, iAngle;  
 
  824   for(iElement = 0; iElement < fElementNumberVector.size(); iElement++)
 
  826     if( std::fabs(Z - fElementNumberVector[iElement]) < 0.5) 
break;
 
  828   if ( iElement == fElementNumberVector.size() ) 
 
  840   fAngleTable = fAngleBank[iElement];
 
  842   G4double kinE = std::sqrt(momentum*momentum + m1*m1) - m1;
 
  844   for( iMomentum = 0; iMomentum < fEnergyBin; iMomentum++)
 
  848     if( kinE < fEnergyVector->GetLowEdgeEnergy(iMomentum) ) 
break;
 
  853   if ( iMomentum >= fEnergyBin ) iMomentum = fEnergyBin-1;   
 
  854   if ( iMomentum < 0 )           iMomentum = 0; 
 
  857   if (iMomentum == fEnergyBin -1 || iMomentum == 0 )   
 
  859     position = (*(*fAngleTable)(iMomentum))(fAngleBin-2)*
G4UniformRand();
 
  863     for(iAngle = 0; iAngle < fAngleBin-1; iAngle++)
 
  865       if( position < (*(*fAngleTable)(iMomentum))(iAngle) ) 
break;
 
  867     if (iAngle >= fAngleBin-1) iAngle = fAngleBin-2;
 
  882     for(iAngle = 0; iAngle < fAngleBin-1; iAngle++)
 
  885       if( position > (*(*fAngleTable)(iMomentum))(iAngle) ) 
break;
 
  887     if (iAngle >= fAngleBin-1) iAngle = fAngleBin-2;
 
  905     for(iAngle = 0; iAngle < fAngleBin-1; iAngle++)
 
  908       if( position > (*(*fAngleTable)(iMomentum))(iAngle) ) 
break;
 
  910     if (iAngle >= fAngleBin-1) iAngle = fAngleBin-2;
 
  924     randAngle = W1*theta1 + W2*theta2;
 
  951     G4cout<<
"G4NuclNuclDiffuseElastic::Initialise() the element with Z = " 
  952       <<Z<<
"; and A = "<<A<<
G4endl;
 
  954   fElementNumberVector.push_back(fAtomicNumber);
 
  958   fAngleBank.push_back(fAngleTable);
 
  972   G4double alpha1, alpha2, alphaMax, alphaCoulomb, delta = 0., sum = 0.;
 
  980   for( i = 0; i < fEnergyBin; i++)
 
  987     partMom     = std::sqrt( kinE*(kinE + 2*m1) );
 
  991     alphaMax = fRutherfordTheta*fCofAlphaMax;
 
  993     if(alphaMax > 
pi) alphaMax = 
pi;
 
  998     alphaCoulomb = fRutherfordTheta*fCofAlphaCoulomb;
 
 1006     G4double delth = (alphaMax-alphaCoulomb)/fAngleBin;
 
 1014     for(j = fAngleBin-1; j >= 1; j--)
 
 1022       alpha1 = alphaCoulomb + delth*(j-1);
 
 1024       alpha2 = alpha1 + delth;
 
 1031       angleVector->
PutValue( j-1 , alpha1, sum ); 
 
 1034     fAngleTable->
insertAt(i,angleVector);
 
 1049  G4double x1, x2, y1, y2, randAngle;
 
 1053     randAngle = (*fAngleTable)(iMomentum)->GetLowEdgeEnergy(iAngle);
 
 1058     if ( iAngle >= 
G4int((*fAngleTable)(iMomentum)->GetVectorLength()) )
 
 1060       iAngle = (*fAngleTable)(iMomentum)->GetVectorLength() - 1;
 
 1062     y1 = (*(*fAngleTable)(iMomentum))(iAngle-1);
 
 1063     y2 = (*(*fAngleTable)(iMomentum))(iAngle);
 
 1065     x1 = (*fAngleTable)(iMomentum)->GetLowEdgeEnergy(iAngle-1);
 
 1066     x2 = (*fAngleTable)(iMomentum)->GetLowEdgeEnergy(iAngle);
 
 1068     if ( x1 == x2 )   randAngle = x2;
 
 1071       if ( y1 == y2 ) randAngle = x1 + ( x2 - x1 )*
G4UniformRand();
 
 1074         randAngle = x1 + ( position - y1 )*( x2 - x1 )/( y2 - y1 );
 
 1113   t = 
SampleT( theParticle, ptot, A);
 
 1116   if(!(t < 0.0 || t >= 0.0)) 
 
 1120       G4cout << 
"G4NuclNuclDiffuseElastic:WARNING: A = " << A 
 
 1121          << 
" mom(GeV)= " << plab/
GeV  
 1122              << 
" S-wave will be sampled"  
 1129     G4cout <<
" t= " << t << 
" tmax= " << tmax 
 
 1130        << 
" ptot= " << ptot << 
G4endl;
 
 1143   else if( cost <= -1.0) 
 
 1150     sint = std::sqrt((1.0-cost)*(1.0+cost));
 
 1154     G4cout << 
"cos(t)=" << cost << 
" std::sin(t)=" << sint << 
G4endl;
 
 1156   G4ThreeVector v1(sint*std::cos(phi),sint*std::sin(phi),cost);
 
 1197   G4double cost = std::cos(thetaCMS);
 
 1205   else if( cost <= -1.0) 
 
 1212     sint = std::sqrt((1.0-cost)*(1.0+cost));
 
 1216     G4cout << 
"cos(tcms)=" << cost << 
" std::sin(tcms)=" << sint << 
G4endl;
 
 1218   G4ThreeVector v1(sint*std::cos(phi),sint*std::sin(phi),cost);
 
 1258   G4double cost = std::cos(thetaLab);
 
 1266   else if( cost <= -1.0) 
 
 1273     sint = std::sqrt((1.0-cost)*(1.0+cost));
 
 1277     G4cout << 
"cos(tlab)=" << cost << 
" std::sin(tlab)=" << sint << 
G4endl;
 
 1279   G4ThreeVector v1(sint*std::cos(phi),sint*std::sin(phi),cost);
 
 1307   G4cout<<
"G4NuclNuclDiffuseElastic::TestAngleTable() init the element with Z = " 
 1308       <<Z<<
"; and A = "<<A<<
G4endl;
 
 1310   fElementNumberVector.push_back(fAtomicNumber);
 
 1317   G4double alpha1=0., alpha2=0., alphaMax=0., alphaCoulomb=0.;
 
 1318   G4double deltaL10 = 0., deltaL96 = 0., deltaAG = 0.;
 
 1319   G4double sumL10 = 0.,sumL96 = 0.,sumAG = 0.;
 
 1326   fWaveVector = partMom/
hbarc;
 
 1328   G4double kR     = fWaveVector*fNuclearRadius;
 
 1333   alphaMax = kRmax*kRmax/kR2;
 
 1335   if (alphaMax > 4.) alphaMax = 4.;  
 
 1337   alphaCoulomb = kRcoul*kRcoul/kR2;
 
 1342       fBeta       = a/std::sqrt(1+a*a);
 
 1344       fAm         = 
CalculateAm( partMom, fZommerfeld, fAtomicNumber);
 
 1351   fAddCoulomb = 
false;
 
 1353   for(j = 1; j < fAngleBin; j++)
 
 1358     alpha1 = alphaMax*(j-1)/fAngleBin;
 
 1359     alpha2 = alphaMax*( j )/fAngleBin;
 
 1361     if( ( alpha2 > alphaCoulomb ) && 
z ) fAddCoulomb = 
true;
 
 1366                                        alpha1, alpha2,epsilon);
 
 1376             <<sumL10<<
"\t"<<sumL96<<
"\t"<<sumAG<<
G4endl;
 
 1378     angleVector->
PutValue( j-1 , alpha1, sumL10 ); 
 
 1380   fAngleTable->
insertAt(i,angleVector);
 
 1381   fAngleBank.push_back(fAngleTable);
 
 1406   if     ( n  < 0 ) legPol = 0.;
 
 1407   else if( n == 0 ) legPol = 1.;
 
 1408   else if( n == 1 ) legPol = 
x;
 
 1409   else if( n == 2 ) legPol = (3.*x*x-1.)/2.;
 
 1410   else if( n == 3 ) legPol = (5.*x*x*x-3.*
x)/2.;
 
 1411   else if( n == 4 ) legPol = (35.*x*x*x*x-30.*x*x+3.)/8.;
 
 1412   else if( n == 5 ) legPol = (63.*x*x*x*x*x-70.*x*x*x+15.*
x)/8.;
 
 1413   else if( n == 6 ) legPol = (231.*x*x*x*x*x*x-315.*x*x*x*x+105.*x*x-5.)/16.;
 
 1418     legPol = std::sqrt( 2./(n*
CLHEP::pi*std::sin(theta+epsilon)) )*std::sin( (n+0.5)*theta+0.25*
CLHEP::pi );
 
 1430   G4double n2, cofn, shny, chny, fn, gn;
 
 1449   for( n = 1; n <= nMax; n++)
 
 1453     cofn = 
G4Exp(-0.5*n2)/(n2+twox2);  
 
 1455     chny = std::cosh(n*y);
 
 1456     shny = std::sinh(n*y);
 
 1458     fn  = twox - twoxcos2xy*chny + n*sin2xy*shny;
 
 1459     gn  =        twoxsin2xy*chny + n*cos2xy*shny;
 
 1470   if(std::abs(x) < 0.0001)
 
 1477     outRe += 
GetErf(x) + cof1*(1-cos2xy)/twox;
 
 1478     outIm += cof1*sin2xy/twox;
 
 1516   G4double sinThetaR      = 2.*fHalfRutThetaTg/(1. + fHalfRutThetaTg2);
 
 1517   G4double cosHalfThetaR2 = 1./(1. + fHalfRutThetaTg2);
 
 1519   G4double u              = std::sqrt(0.5*fProfileLambda/sinThetaR);
 
 1521   G4double dTheta         = theta - fRutherfordTheta;
 
 1528   order                  /= std::sqrt(2.);
 
 1531   G4complex a0            = 0.5*(1. + 4.*(1.+im*u2)*cosHalfThetaR2/3.)/sinThetaR;
 
 1532   G4complex a1            = 0.5*(1. + 2.*(1.+im*u2m2p3)*cosHalfThetaR2)/sinThetaR;
 
 1533   G4complex out           = gamma*(1. - a1*dTheta) - a0;
 
 1544   G4double sinThetaR      = 2.*fHalfRutThetaTg/(1. + fHalfRutThetaTg2);
 
 1545   G4double cosHalfThetaR2 = 1./(1. + fHalfRutThetaTg2);
 
 1547   G4double u              = std::sqrt(0.5*fProfileLambda/sinThetaR);
 
 1549   G4double dTheta         = theta - fRutherfordTheta;
 
 1556   order                  /= std::sqrt(2.);
 
 1558   G4complex a0            = 0.5*(1. + 4.*(1.+im*u2)*cosHalfThetaR2/3.)/sinThetaR;
 
 1559   G4complex a1            = 0.5*(1. + 2.*(1.+im*u2m2p3)*cosHalfThetaR2)/sinThetaR;
 
 1560   G4complex out           = -gamma*(1. - a1*dTheta) - a0;
 
 1576   if( theta <= fRutherfordTheta )
 
 1596   G4double sinThetaR  = 2.*fHalfRutThetaTg/(1. + fHalfRutThetaTg2);
 
 1597   G4double dTheta     = 0.5*(theta - fRutherfordTheta);
 
 1598   G4double sindTheta  = std::sin(dTheta);
 
 1599   G4double persqrt2   = std::sqrt(0.5);
 
 1602   order              *= std::sqrt(0.5*fProfileLambda/sinThetaR)*2.*sindTheta;
 
 1607   if ( theta <= fRutherfordTheta )
 
 1632   for( n = 0; n < fMaxL; n++)
 
 1636     b = ( std::sqrt( 
G4double(n*(n+1)) ) )/fWaveVector;
 
 1638     T12b = fSumSigma*
G4Exp(-b2/fNuclearRadiusSquare)/
CLHEP::pi/fNuclearRadiusSquare;         
 
 1639     shiftN = std::exp( -0.5*(1.-im*fEtaRatio)*T12b ) - 1.;
 
 1642   out /= 2.*im*fWaveVector;
 
 1655   G4double T12b, 
a, aTemp, b2, sinThetaH = std::sin(0.5*theta);
 
 1656   G4double sinThetaH2 = sinThetaH*sinThetaH;
 
 1661   b2 = fWaveVector*fWaveVector*fNuclearRadiusSquare*sinThetaH2;
 
 1665   for( n = 1; n < fMaxL; n++)
 
 1667     T12b   = aTemp*
G4Exp(-b2/n)/
n;         
 
 1693   fNuclearRadius = fNuclearRadius1 + fNuclearRadius2;
 
 1707     fBeta       = a/std::sqrt(1+a*a);
 
 1709     fRutherfordRatio = fZommerfeld/fWaveVector; 
 
 1710     fAm         = 
CalculateAm( partMom, fZommerfeld, fAtomicNumber);
 
 1715   fProfileDelta  = fCofDelta*fProfileLambda;
 
 1716   fProfileAlpha  = fCofAlpha*fProfileLambda;
 
 1742     fBeta       = a/std::sqrt(1+a*a);
 
 1744     fRutherfordRatio = fZommerfeld/fWaveVector; 
 
 1745     fAm         = 
CalculateAm( partMom, fZommerfeld, fAtomicNumber);
 
 1748   fProfileDelta  = fCofDelta*fProfileLambda;
 
 1749   fProfileAlpha  = fCofAlpha*fProfileLambda;
 
 1772   fNuclearRadiusSquare = fNuclearRadius1*fNuclearRadius1+fNuclearRadius2*fNuclearRadius2;
 
 1782   if( pN < 0. ) pN = 0.;
 
 1785   if( tN < 0. ) tN = 0.;
 
 1796   kR12 = fWaveVector*std::sqrt(fNuclearRadiusSquare);
 
 1798   fMaxL = (
G4int(kR12)+1)*4;
 
 1804       fBeta       = a/std::sqrt(1+a*a);
 
 1806       fAm         = 
CalculateAm( partMom, fZommerfeld, fAtomicNumber);
 
 1835   G4double proj_energy   = proj_mass + pTkin; 
 
 1836   G4double proj_momentum = std::sqrt(pTkin*(pTkin+2*proj_mass));
 
 1851   if( proj_momentum >= 1.2 )
 
 1855   else if( proj_momentum >= 0.6 )
 
 1862     fEtaRatio = 15.5*proj_momentum/(27*proj_momentum*proj_momentum*proj_momentum+2);
 
 1868   if( proj_momentum >= 10. ) 
 
 1878         A0 = 100. - B0*
G4Log(3.0e7);
 
 1880         xsection = A0 + B0*
G4Log(proj_energy) - 11
 
 1882                      0.93827*0.93827,-0.165);        
 
 1887       if(pParticle == tParticle) 
 
 1889         if( proj_momentum < 0.73 )
 
 1893         else if( proj_momentum < 1.05  )
 
 1895           hnXsc = 23 + 40*(
G4Log(proj_momentum/0.73))*
 
 1896                          (
G4Log(proj_momentum/0.73));
 
 1907         if( proj_momentum < 0.8 )
 
 1911         else if( proj_momentum < 1.4 )
 
 1935   G4double sinThetaR  = 2.*fHalfRutThetaTg/(1. + fHalfRutThetaTg2);
 
 1936   G4double dTheta     = 0.5*(theta - fRutherfordTheta);
 
 1937   G4double sindTheta  = std::sin(dTheta);
 
 1944   order = std::abs(order); 
 
 1952   if ( theta <= fRutherfordTheta )
 
 1954     out  = 1. + 0.5*( (0.5-cosFresnel)*(0.5-cosFresnel)+(0.5-sinFresnel)*(0.5-sinFresnel) )*prof2; 
 
 1955     out += ( cosFresnel + sinFresnel - 1. )*prof;
 
 1959     out = 0.5*( (0.5-cosFresnel)*(0.5-cosFresnel)+(0.5-sinFresnel)*(0.5-sinFresnel) )*prof2;
 
 1972   const G4double cof[6] = { 76.18009172947146,     -86.50532032941677,
 
 1973                              24.01409824083091,      -1.231739572450155,
 
 1974                               0.1208650973866179e-2, -0.5395239384953e-5  } ;
 
 1978   tmp -= (z + 0.5) * std::log(tmp);
 
 1981   for ( j = 0; j <= 5; j++ )
 
 1986   return -tmp + std::log(2.5066282746310005*ser);
 
 1996   G4double modvalue, value2, fact1, fact2, arg, shift, bessel;
 
 1998   modvalue = std::fabs(value);
 
 2002     value2 = value*
value;
 
 2004     fact1  = 57568490574.0 + value2*(-13362590354.0 
 
 2005                            + value2*( 651619640.7 
 
 2006                            + value2*(-11214424.18 
 
 2007                            + value2*( 77392.33017 
 
 2008                            + value2*(-184.9052456   ) ) ) ) );
 
 2010     fact2  = 57568490411.0 + value2*( 1029532985.0 
 
 2011                            + value2*( 9494680.718
 
 2012                            + value2*(59272.64853
 
 2013                            + value2*(267.8532712 
 
 2014                            + value2*1.0               ) ) ) );
 
 2016     bessel = fact1/fact2;
 
 2024     shift  = modvalue-0.785398164;
 
 2026     fact1  = 1.0 + value2*(-0.1098628627e-2 
 
 2027                  + value2*(0.2734510407e-4
 
 2028                  + value2*(-0.2073370639e-5 
 
 2029                  + value2*0.2093887211e-6    ) ) );
 
 2031     fact2  = -0.1562499995e-1 + value2*(0.1430488765e-3
 
 2032                               + value2*(-0.6911147651e-5 
 
 2033                               + value2*(0.7621095161e-6
 
 2034                               - value2*0.934945152e-7    ) ) );
 
 2036     bessel = std::sqrt(0.636619772/modvalue)*(std::cos(shift)*fact1 - arg*std::sin(shift)*fact2 );
 
 2048   G4double modvalue, value2, fact1, fact2, arg, shift, bessel;
 
 2050   modvalue = std::fabs(value);
 
 2052   if ( modvalue < 8.0 ) 
 
 2054     value2 = value*
value;
 
 2056     fact1  = value*(72362614232.0 + value2*(-7895059235.0 
 
 2057                                   + value2*( 242396853.1
 
 2058                                   + value2*(-2972611.439 
 
 2059                                   + value2*( 15704.48260 
 
 2060                                   + value2*(-30.16036606  ) ) ) ) ) );
 
 2062     fact2  = 144725228442.0 + value2*(2300535178.0 
 
 2063                             + value2*(18583304.74
 
 2064                             + value2*(99447.43394 
 
 2065                             + value2*(376.9991397 
 
 2066                             + value2*1.0             ) ) ) );
 
 2067     bessel = fact1/fact2;
 
 2075     shift  = modvalue - 2.356194491;
 
 2077     fact1  = 1.0 + value2*( 0.183105e-2 
 
 2078                  + value2*(-0.3516396496e-4
 
 2079                  + value2*(0.2457520174e-5 
 
 2080                  + value2*(-0.240337019e-6          ) ) ) );
 
 2082     fact2 = 0.04687499995 + value2*(-0.2002690873e-3
 
 2083                           + value2*( 0.8449199096e-5
 
 2084                           + value2*(-0.88228987e-6
 
 2085                           + value2*0.105787412e-6       ) ) );
 
 2087     bessel = std::sqrt( 0.636619772/modvalue)*(std::cos(shift)*fact1 - arg*std::sin(shift)*fact2);
 
 2089     if (value < 0.0) bessel = -bessel;
 
G4double G4ParticleHPJENDLHEData::G4double result
 
G4double Legendre10(T &typeT, F f, G4double a, G4double b)
 
static G4Pow * GetInstance()
 
G4double powA(G4double A, G4double y) const 
 
ThreeVector shoot(const G4int Ap, const G4int Af)
 
Hep3Vector boostVector() const 
 
static G4double GetNuclearMass(const G4double A, const G4double Z)
 
G4double CalculateNuclearRad(G4double A)
 
G4double Legendre96(T &typeT, F f, G4double a, G4double b)
 
G4double GetKineticEnergy() const 
 
G4NuclNuclDiffuseElastic()
 
G4double GetExpSin(G4double x)
 
G4double CalculateAm(G4double momentum, G4double n, G4double Z)
 
std::vector< ExP01TrackerHit * > a
 
static constexpr double millibarn
 
static constexpr double hbarc
 
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
 
G4double SampleTableThetaCMS(const G4ParticleDefinition *aParticle, G4double p, G4double Z, G4double A)
 
void PutValue(size_t index, G4double energy, G4double dataValue)
 
G4double GetScatteringAngle(G4int iMomentum, G4int iAngle, G4double position)
 
G4double DampFactor(G4double z)
 
G4double GetExpCos(G4double x)
 
G4double GetDiffElasticProb(G4double theta)
 
G4complex AmplitudeNear(G4double theta)
 
G4double GetInvCoulombElasticXsc(const G4ParticleDefinition *particle, G4double tMand, G4double momentum, G4double A, G4double Z)
 
G4complex PhaseNear(G4double theta)
 
G4complex CoulombAmplitude(G4double theta)
 
G4double GetErf(G4double x)
 
G4ParticleDefinition * GetDefinition() const 
 
G4complex AmplitudeGla(G4double theta)
 
G4double GetDiffuseElasticSumXsc(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double A, G4double Z)
 
G4double GetCoulombElasticXsc(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double Z)
 
void CalculateCoulombPhaseZero()
 
G4double GetLowEdgeEnergy(size_t binNumber) const 
 
G4double GetDiffuseElasticXsc(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double A)
 
G4double CalculateParticleBeta(const G4ParticleDefinition *particle, G4double momentum)
 
static G4NistManager * Instance()
 
G4double SampleThetaCMS(const G4ParticleDefinition *aParticle, G4double p, G4double A)
 
static constexpr double twopi
 
G4double AdaptiveGauss(T &typeT, F f, G4double a, G4double b, G4double e)
 
G4double Profile(G4double theta)
 
G4complex AmplitudeGG(G4double theta)
 
G4double GetTotalMomentum() const 
 
static constexpr double TeV
 
void SetMinEnergy(G4double anEnergy)
 
G4double CalculateCoulombPhase(G4int n)
 
std::complex< G4double > G4complex
 
G4IonTable * GetIonTable() const 
 
G4GLOB_DLL std::ostream G4cout
 
double A(double temperature)
 
G4double GetHadronNucleonXscNS(G4ParticleDefinition *pParticle, G4double pTkin, G4ParticleDefinition *tParticle)
 
static size_t GetNumberOfElements()
 
const XML_Char int const XML_Char * value
 
const G4ParticleDefinition * GetDefinition() const 
 
void CalculateRutherfordAnglePar()
 
static constexpr double degree
 
void TestAngleTable(const G4ParticleDefinition *theParticle, G4double partMom, G4double Z, G4double A)
 
void InitParametersGla(const G4DynamicParticle *aParticle, G4double partMom, G4double Z, G4double A)
 
HepLorentzVector & boost(double, double, double)
 
G4double GetIntegrandFunction(G4double theta)
 
static G4Triton * Triton()
 
static G4Proton * Proton()
 
G4double BesselJone(G4double z)
 
static G4PionPlus * PionPlus()
 
G4double GetInvElasticXsc(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double A, G4double Z)
 
G4double SampleT(const G4ParticleDefinition *aParticle, G4double p, G4double A)
 
G4double GetDiffElasticSumProb(G4double theta)
 
static G4Neutron * Neutron()
 
virtual G4double SampleInvariantT(const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
G4complex GammaMore(G4double theta)
 
const G4LorentzVector & Get4Momentum() const 
 
static G4Deuteron * Deuteron()
 
G4LorentzVector Get4Momentum() const 
 
G4double ThetaCMStoThetaLab(const G4DynamicParticle *aParticle, G4double tmass, G4double thetaCMS)
 
G4double G4Log(G4double x)
 
G4double G4Exp(G4double initial_x)
Exponential Function double precision. 
 
static constexpr double GeV
 
void InitialiseOnFly(G4double Z, G4double A)
 
G4double BesselJzero(G4double z)
 
G4double CalculateZommerfeld(G4double beta, G4double Z1, G4double Z2)
 
G4double GetPDGMass() const 
 
static G4ParticleTable * GetParticleTable()
 
void InitDynParameters(const G4ParticleDefinition *theParticle, G4double partMom)
 
G4double GetRatioGen(G4double theta)
 
G4complex GammaLess(G4double theta)
 
static G4PionMinus * PionMinus()
 
G4double ProfileNear(G4double theta)
 
G4double GetFresnelIntegrandXsc(G4double alpha)
 
G4double SampleTableT(const G4ParticleDefinition *aParticle, G4double p, G4double Z, G4double A)
 
G4double GetAtomicMassAmu(const G4String &symb) const 
 
G4complex GetErfcInt(G4complex z)
 
static constexpr double GeV
 
void insertAt(size_t, G4PhysicsVector *)
 
G4complex GetErfInt(G4complex z)
 
void SetMaxEnergy(const G4double anEnergy)
 
static constexpr double MeV
 
G4double CalcMandelstamS(const G4double mp, const G4double mt, const G4double Plab)
 
static constexpr double pi
 
virtual ~G4NuclNuclDiffuseElastic()
 
G4double GetLegendrePol(G4int n, G4double x)
 
std::vector< G4Element * > G4ElementTable
 
static constexpr double fermi
 
static G4ElementTable * GetElementTable()
 
G4double GetPDGCharge() const 
 
static const G4double alpha
 
G4double GetSint(G4double x)
 
G4complex AmplitudeSim(G4double theta)
 
G4double GetInvElasticSumXsc(const G4ParticleDefinition *particle, G4double tMand, G4double momentum, G4double A, G4double Z)
 
static constexpr double keV
 
G4complex GetErfComp(G4complex z, G4int nMax)
 
G4double ThetaLabToThetaCMS(const G4DynamicParticle *aParticle, G4double tmass, G4double thetaLab)
 
G4double GetDiffElasticSumProbA(G4double alpha)
 
G4double IntegralElasticProb(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double A)
 
static constexpr double twopi
 
double epsilon(double density, double temperature)
 
static constexpr double pi
 
G4double SampleThetaLab(const G4HadProjectile *aParticle, G4double tmass, G4double A)
 
G4int GetBaryonNumber() const 
 
G4double GetTotalMomentum() const 
 
G4double GetCint(G4double x)
 
G4complex GammaLogarithm(G4complex xx)
 
G4double BesselOneByArg(G4double z)
 
void InitParameters(const G4ParticleDefinition *theParticle, G4double partMom, G4double Z, G4double A)