40 const G4double G4JTPolynomialSolver::base   = 2;
 
   49   : 
sr(0.), si(0.), u(0.),
v(0.),
 
   50     a(0.), 
b(0.), 
c(0.), d(0.),
 
   51     a1(0.), a3(0.), a7(0.),
 
   52     e(0.), f(0.), 
g(0.), h(0.),
 
   53     szr(0.), szi(0.), lzr(0.), lzi(0.),
 
   65   G4double t=0.0, aa=0.0, 
bb=0.0, cc=0.0, factor=1.0;
 
   67   G4double xm=0.0, ff=0.0, df=0.0, dx=0.0;
 
   68   G4int cnt=0, nz=0, i=0, j=0, jj=0, l=0, nm1=0, zerok=0;
 
   73   static const G4double xx = std::sqrt(0.5);
 
   75   static const G4double cosr = std::cos(rot),
 
   82   if (!(op[0] != 0.0))  { 
return -1; }
 
   86   while (!(op[n] != 0.0))
 
   93   if (n < 1) { 
return -1; }
 
   97   std::vector<G4double> temp(degr+1) ;
 
   98   std::vector<G4double> pt(degr+1) ;
 
  101   qp.assign(degr+1,0) ;
 
  103   qk.assign(degr+1,0) ;
 
  104   svk.assign(degr+1,0) ;
 
  115       zeror[degr-1] = -
p[1]/
p[0];
 
  122       Quadratic(
p[0],
p[1],
p[2],&zeror[degr-2],&zeroi[degr-2],
 
  123                 &zeror[degr-1],&zeroi[degr-1]);
 
  135       if (
x > max)  { max = 
x; }
 
  147     if ( ((sc <= 1.0) && (max >= 10.0)) 
 
  148       || ((sc > 1.0) && (infin/sc >= max)) 
 
  149       || ((infin/sc >= max) && (max >= 10)) )
 
  158           { 
p[i] = factor*
p[i]; }  
 
  166       pt[i] = (std::fabs(
p[i]));
 
  179       if (xm < 
x)  { 
x = xm; }
 
  189         { ff = ff*xm + pt[i]; }
 
  190       if (ff <= 0.0)  { 
break; }
 
  197     while (std::fabs(dx/
x) > 0.005)
 
  221     zerok = (k[n-1] == 0);
 
  233           k[j] = t*k[j-1]+
p[j];
 
  236         zerok = (std::fabs(k[n-1]) <= std::fabs(
bb)*eta*10.0);
 
  246         zerok = (!(k[n-1] != 0.0));
 
  257     for (cnt = 0;cnt < 20;cnt++)
 
  264       xxx = cosr*xo - sinr*yo;
 
  265       yo = sinr*xo + cosr*yo;
 
  271       ComputeFixedShiftPolynomial(20*(cnt+1),&nz);
 
  311 void G4JTPolynomialSolver::ComputeFixedShiftPolynomial(
G4int l2, 
G4int *nz)
 
  317   G4double svu=0.0, svv=0.0, ui=0.0, vi=0.0, xs=0.0;
 
  318   G4double betas=0.25, betav=0.25, oss=sr, ovv=v,
 
  319            ss=0.0, vv=0.0, ts=1.0, tv=1.0;
 
  322   G4int type=0, i=0, j=0, iflag=0, vpass=0, spass=0, vtry=0, stry=0;
 
  328   QuadraticSyntheticDivision(n,&u,&v,
p,qp,&a,&b);
 
  329   ComputeScalarFactors(&type);
 
  334     ComputeNextPolynomial(&type);
 
  335     ComputeScalarFactors(&type);
 
  336     ComputeNewEstimate(type,&ui,&vi);
 
  342     if (k[n-1] != 0.0)  { ss = -
p[n]/k[n-1]; }
 
  345     if (j == 0 || type == 3)
 
  356     if (vv != 0.0)  { tv = std::fabs((vv-ovv)/vv); }
 
  357     if (ss != 0.0)  { ts = std::fabs((ss-oss)/ss); }
 
  361     if (tv < otv)  { tvv = tv*otv; }
 
  363     if (ts < ots)  { tss = ts*ots; }
 
  366     vpass = (tvv < betav);
 
  367     spass = (tss < betas);
 
  368     if (!(spass || vpass))
 
  392     if ((spass && (!vpass)) || (tss < tvv))
 
  394       RealPolynomialIteration(&xs,nz,&iflag);
 
  395       if (*nz > 0)  { 
return; }
 
  402       if (iflag == 0)  { 
goto _restore_variables; }
 
  411 _quadratic_iteration:
 
  415       QuadraticPolynomialIteration(&ui,&vi,nz);
 
  416       if (*nz > 0)  { 
return; }
 
  427       if (stry || !spass)  { 
break; }
 
  432       RealPolynomialIteration(&xs,nz,&iflag);
 
  433       if (*nz > 0)  { 
return; }
 
  440       if (iflag == 0)  { 
break; }
 
  464     if (vpass && !vtry)  { 
goto _quadratic_iteration; }
 
  469     QuadraticSyntheticDivision(n,&u,&v,
p,qp,&a,&b);
 
  470     ComputeScalarFactors(&type);
 
  479 void G4JTPolynomialSolver::
 
  491   G4double mp=0.0, ee=0.0, t=0.0, zm=0.0;
 
  492   G4int type=0, i=1, j=0, tried=0;
 
  503     Quadratic(1.0,u,v,&szr,&szi,&lzr,&lzi);
 
  509     if (std::fabs(std::fabs(szr)-std::fabs(lzr)) > 0.01 * std::fabs(lzr))
 
  514     QuadraticSyntheticDivision(n,&u,&v,
p,qp,&a,&b);
 
  515     mp = std::fabs(a-szr*b) + std::fabs(szi*b);
 
  519     zm = std::sqrt(std::fabs(v));
 
  520     ee = 2.0*std::fabs(qp[0]);
 
  524       ee = ee*zm + std::fabs(qp[i]);
 
  526     ee = ee*zm + std::fabs(a+t);
 
  527     ee *= (5.0 *mre + 4.0*are);
 
  528     ee = ee - (5.0*mre+2.0*are)*(std::fabs(a+t)+std::fabs(b)*zm)
 
  529             + 2.0*are*std::fabs(t);
 
  543     if (j > 20)  { 
return; }
 
  546       if (!(relstp > 0.01 || mp < omp || tried))
 
  551         if (relstp < eta)  { relstp = eta; }
 
  552         relstp = std::sqrt(relstp);
 
  555         QuadraticSyntheticDivision(n,&u,&v,
p,qp,&a,&b);
 
  558           ComputeScalarFactors(&type);
 
  559           ComputeNextPolynomial(&type);
 
  569     ComputeScalarFactors(&type);
 
  570     ComputeNextPolynomial(&type);
 
  571     ComputeScalarFactors(&type);
 
  572     ComputeNewEstimate(type,&ui,&vi);
 
  576     if (!(vi != 0.0))  { 
return; }
 
  577     relstp = std::fabs((vi-v)/vi);
 
  583 void G4JTPolynomialSolver::
 
  619     ee = (mre/(are+mre))*std::fabs(qp[0]);
 
  622       ee = ee*mx + std::fabs(qp[i]);
 
  628     if (mp <= 20.0*((are+mre)*ee-mre*mp))
 
  639     if (j > 10)  { 
return; }
 
  642       if (!(std::fabs(t) > 0.001*std::fabs(xs-t) || mp < omp))
 
  664     if (std::fabs(kv) <= std::fabs(k[n-1])*10.0*eta)  
 
  678         k[i] = t*qk[i-1] + qp[i];
 
  687     if (std::fabs(kv) > std::fabs(k[n-1]*10.0*eta))  { t = -pv/kv; }
 
  692 void G4JTPolynomialSolver::ComputeScalarFactors(
G4int *type)
 
  702   QuadraticSyntheticDivision(n-1,&u,&v,k,qk,&c,&d);
 
  703   if (std::fabs(c) <= std::fabs(k[n-1]*100.0*eta))
 
  705     if (std::fabs(d) <= std::fabs(k[n-2]*100.0*eta))
 
  712   if (std::fabs(d) < std::fabs(c))
 
  719     a3 = a*e + (h/c+g)*b;
 
  729   a3 = (a+g)*e + h*(b/d);
 
  734 void G4JTPolynomialSolver::ComputeNextPolynomial(
G4int *type)
 
  752   if (*type == 1)  { temp = b; }
 
  753   if (std::fabs(a1) <= std::fabs(temp)*eta*10.0)
 
  761       k[i] = a3*qk[i-2] - a7*qp[i-1];
 
  771   k[1] = qp[1] - a7*qp[0];
 
  774     k[i] = a3*qk[i-2] - a7*qp[i-1] + qp[i];
 
  778 void G4JTPolynomialSolver::
 
  784   G4double a4=0.0, a5=0.0, b1=0.0, b2=0.0,
 
  785            c1=0.0, 
c2=0.0, c3=0.0, c4=0.0, temp=0.0;
 
  809   b2 = -(k[n-2]+b1*
p[n-1])/
p[n];
 
  814   temp = a5 + b1*a4 - c4;
 
  821   *uu = u - (u*(c3+
c2)+v*(b1*a1+b2*a7))/temp;
 
  822   *vv = v*(1.0+c4/temp);
 
  826 void G4JTPolynomialSolver::
 
  828                            std::vector<G4double> &
pp, std::vector<G4double> &qq,  
 
  837   *aa = pp[1] - (*bb)*(*uu);
 
  841     cc = pp[i] - (*aa)*(*uu) - (*bb)*(*vv);
 
  884   if (std::fabs(bb) < std::fabs(cc))
 
  890     ee = bb*(bb/std::fabs(cc)) - ee;
 
  891     dd = std::sqrt(std::fabs(ee))*std::sqrt(std::fabs(cc));
 
  895     ee = 1.0 - (aa/
bb)*(cc/bb);
 
  896     dd = std::sqrt(std::fabs(ee))*std::fabs(bb);
 
  902     *ssi = std::fabs(dd/aa);
 
  912       { *ssr = (cc/ *lr)/aa; }
 
static G4Pow * GetInstance()
 
static c2_factory< G4double > c2
 
G4double powN(G4double x, G4int n) const 
 
std::vector< ExP01TrackerHit * > a
 
const XML_Char int const XML_Char int const XML_Char * base
 
static constexpr double sr
 
G4double G4Log(G4double x)
 
G4double G4Exp(G4double initial_x)
Exponential Function double precision. 
 
static const char sss[MAX_N_PAR+2]
 
T max(const T t1, const T t2)
brief Return the largest of the two arguments 
 
T min(const T t1, const T t2)
brief Return the smallest of the two arguments 
 
static constexpr double deg
 
G4int FindRoots(G4double *op, G4int degree, G4double *zeror, G4double *zeroi)