Geant4  10.03.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4HadronElasticPhysics.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4HadronElasticPhysics.cc 99978 2016-10-13 07:28:13Z gcosmo $
27 //
28 //---------------------------------------------------------------------------
29 //
30 // ClassName: G4HadronElasticPhysics
31 //
32 // Author: 23 November 2006 V. Ivanchenko
33 //
34 // Modified:
35 // 21.03.2007 V.Ivanchenko Use G4BGGNucleonElasticXS and G4BGGPionElasticXS;
36 // Reduce thresholds for HE and Q-models to zero
37 // 03.06.2010 V.Ivanchenko cleanup constructors and ConstructProcess method
38 // 29.07.2010 V.Ivanchenko rename this class from G4HadronHElasticPhysics to
39 // G4HadronElasticPhysics, old version of the class
40 // is renamed to G4HadronElasticPhysics93
41 //
42 //----------------------------------------------------------------------------
43 //
44 // CHIPS for sampling scattering for p and n
45 // Glauber model for samplimg of high energy pi+- (E > 1GeV)
46 // LHEP sampling model for the other particle
47 // BBG cross sections for p, n and pi+-
48 // LHEP cross sections for other particles
49 
51 
52 #include "G4SystemOfUnits.hh"
53 #include "G4ParticleDefinition.hh"
54 #include "G4ProcessManager.hh"
55 
56 #include "G4MesonConstructor.hh"
57 #include "G4BaryonConstructor.hh"
58 #include "G4IonConstructor.hh"
59 
61 #include "G4HadronElastic.hh"
62 #include "G4ChipsElasticModel.hh"
64 #include "G4AntiNuclElastic.hh"
65 
67 
68 #include "G4BGGNucleonElasticXS.hh"
69 #include "G4BGGPionElasticXS.hh"
70 
72 
74 
75 #include "G4NeutronElasticXS.hh"
76 
77 #include "G4CrossSectionElastic.hh"
78 
79 // factory
81 //
83 //
84 G4ThreadLocal G4bool G4HadronElasticPhysics::wasActivated = false;
85 G4ThreadLocal G4HadronElastic* G4HadronElasticPhysics::neutronModel = 0;
86 G4ThreadLocal G4HadronicProcess* G4HadronElasticPhysics::neutronProcess = 0;
87 
89  : G4VPhysicsConstructor("hElasticWEL_CHIPS"), verbose(ver)
90 {
91  if(verbose > 1) {
92  G4cout << "### G4HadronElasticPhysics: " << GetPhysicsName()
93  << G4endl;
94  }
95 }
96 
98 {}
99 
101 {
102  // G4cout << "G4HadronElasticPhysics::ConstructParticle" << G4endl;
103  G4MesonConstructor pMesonConstructor;
104  pMesonConstructor.ConstructParticle();
105 
106  G4BaryonConstructor pBaryonConstructor;
107  pBaryonConstructor.ConstructParticle();
108 
109  G4IonConstructor pConstructor;
110  pConstructor.ConstructParticle();
111 }
112 
114 {
115  if(wasActivated) { return; }
116  wasActivated = true;
117 
118  const G4double elimitPi = 1.0*GeV;
119  const G4double elimitAntiNuc = 100.*MeV;
120  const G4double delta = 0.1*MeV;
121  if(verbose > 1) {
122  G4cout << "### HadronElasticPhysics::ConstructProcess: Elimit for pi "
123  << elimitPi/GeV << " GeV" << G4endl;
124  G4cout << " for anti-neuclei "
125  << elimitAntiNuc/GeV << " GeV" << G4endl;
126  }
127 
128  G4AntiNuclElastic* anuc = new G4AntiNuclElastic();
129  anuc->SetMinEnergy(elimitAntiNuc);
130  G4CrossSectionElastic* anucxs =
132 
133  G4HadronElastic* lhep0 = new G4HadronElastic();
134  G4HadronElastic* lhep1 = new G4HadronElastic();
135  G4HadronElastic* lhep2 = new G4HadronElastic();
136  lhep1->SetMaxEnergy(elimitPi+delta);
137  lhep2->SetMaxEnergy(elimitAntiNuc+delta);
138 
140  neutronModel = new G4ChipsElasticModel();
141 
143  he->SetMinEnergy(elimitPi);
144 
145  auto myParticleIterator=GetParticleIterator();
146  myParticleIterator->reset();
147  while( (*myParticleIterator)() )
148  {
149  G4ParticleDefinition* particle = myParticleIterator->value();
150  G4ProcessManager* pmanager = particle->GetProcessManager();
151  G4String pname = particle->GetParticleName();
152  if(pname == "anti_lambda" ||
153  pname == "anti_neutron" ||
154  pname == "anti_omega-" ||
155  pname == "anti_sigma-" ||
156  pname == "anti_sigma+" ||
157  pname == "anti_xi-" ||
158  pname == "anti_xi0" ||
159  pname == "lambda" ||
160  pname == "omega-" ||
161  pname == "sigma-" ||
162  pname == "sigma+" ||
163  pname == "xi-" ||
164  pname == "alpha" ||
165  pname == "deuteron" ||
166  pname == "triton"
167  ) {
168 
170  hel->RegisterMe(lhep0);
171  pmanager->AddDiscreteProcess(hel);
172  if(verbose > 1) {
173  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
174  << " added for " << particle->GetParticleName() << G4endl;
175  }
176 
177  } else if(pname == "He3") {
179  G4VCrossSectionDataSet* theComponentGGNuclNuclData =
181  hel->AddDataSet(theComponentGGNuclNuclData);
182  hel->RegisterMe(lhep0);
183  pmanager->AddDiscreteProcess(hel);
184  if(verbose > 1) {
185  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
186  << " added for " << particle->GetParticleName() << G4endl;
187  }
188 
189  } else if(pname == "proton") {
190 
192  //hel->AddDataSet(new G4BGGNucleonElasticXS(particle));
193 
194  // hel->AddDataSet(new G4ChipsProtonElasticXS());
196 
197  hel->RegisterMe(chipsp);
198  pmanager->AddDiscreteProcess(hel);
199  if(verbose > 1) {
200  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
201  << " added for " << particle->GetParticleName() << G4endl;
202  }
203 
204  } else if(pname == "neutron") {
205 
206  neutronProcess = new G4HadronElasticProcess();
207  neutronProcess->AddDataSet(G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(G4NeutronElasticXS::Default_Name()));
208  neutronProcess->RegisterMe(neutronModel);
209  pmanager->AddDiscreteProcess(neutronProcess);
210  if(verbose > 1) {
211  G4cout << "### HadronElasticPhysics: "
212  << neutronProcess->GetProcessName()
213  << " added for " << particle->GetParticleName() << G4endl;
214  }
215 
216  } else if (pname == "pi+" || pname == "pi-") {
217 
219  hel->AddDataSet(new G4BGGPionElasticXS(particle));
220  hel->RegisterMe(lhep1);
221  hel->RegisterMe(he);
222  pmanager->AddDiscreteProcess(hel);
223  if(verbose > 1) {
224  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
225  << " added for " << particle->GetParticleName() << G4endl;
226  }
227 
228  } else if(pname == "kaon-" ||
229  pname == "kaon+" ||
230  pname == "kaon0S" ||
231  pname == "kaon0L"
232  ) {
233 
235  hel->RegisterMe(lhep0);
236  pmanager->AddDiscreteProcess(hel);
237  if(verbose > 1) {
238  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
239  << " added for " << particle->GetParticleName() << G4endl;
240  }
241 
242  } else if(
243  pname == "anti_proton" ||
244  pname == "anti_alpha" ||
245  pname == "anti_deuteron" ||
246  pname == "anti_triton" ||
247  pname == "anti_He3" ) {
248 
250  hel->AddDataSet(anucxs);
251  hel->RegisterMe(lhep2);
252  hel->RegisterMe(anuc);
253  pmanager->AddDiscreteProcess(hel);
254  }
255  }
256 }
257 
258 
260 {
261  return neutronModel;
262 }
263 
265 {
266  return neutronProcess;
267 }
268 
269 
G4HadronElastic * GetNeutronModel()
G4HadronicProcess * GetNeutronProcess()
G4int AddDiscreteProcess(G4VProcess *aProcess, G4int ord=ordDefault)
static void ConstructParticle()
#define G4ThreadLocal
Definition: tls.hh:89
static void ConstructParticle()
int G4int
Definition: G4Types.hh:78
G4ComponentAntiNuclNuclearXS * GetComponentCrossSection()
const G4String & GetParticleName() const
static void ConstructParticle()
void RegisterMe(G4HadronicInteraction *a)
G4ParticleTable::G4PTblDicIterator * GetParticleIterator() const
void SetMinEnergy(G4double anEnergy)
void AddDataSet(G4VCrossSectionDataSet *aDataSet)
G4GLOB_DLL std::ostream G4cout
bool G4bool
Definition: G4Types.hh:79
static G4CrossSectionDataSetRegistry * Instance()
const G4String & GetPhysicsName() const
const G4String & GetProcessName() const
Definition: G4VProcess.hh:408
string pname
Definition: eplot.py:33
G4ProcessManager * GetProcessManager() const
static constexpr double GeV
Definition: G4SIunits.hh:217
static const char * Default_Name()
void SetMaxEnergy(const G4double anEnergy)
static const char * Default_Name()
#define G4endl
Definition: G4ios.hh:61
static constexpr double MeV
Definition: G4SIunits.hh:214
double G4double
Definition: G4Types.hh:76
#define G4_DECLARE_PHYSCONSTR_FACTORY(physics_constructor)