Geant4  10.03.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4ErrorFreeTrajState.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4ErrorFreeTrajState.cc 71874 2013-06-27 13:39:59Z gunter $
27 //
28 // ------------------------------------------------------------
29 // GEANT 4 class implementation file
30 // ------------------------------------------------------------
31 //
32 
33 #include <iomanip>
34 
35 #include "G4PhysicalConstants.hh"
36 #include "G4SystemOfUnits.hh"
37 #include "G4Field.hh"
38 #include "G4FieldManager.hh"
40 #include "G4GeometryTolerance.hh"
41 #include "G4Material.hh"
42 #include "G4ErrorPropagatorData.hh"
43 #include "G4ErrorFreeTrajState.hh"
44 #include "G4ErrorFreeTrajParam.hh"
46 #include "G4ErrorMatrix.hh"
47 
48 //------------------------------------------------------------------------
49 G4ErrorFreeTrajState::G4ErrorFreeTrajState( const G4String& partName, const G4Point3D& pos, const G4Vector3D& mom, const G4ErrorTrajErr& errmat) : G4ErrorTrajState( partName, pos, mom, errmat )
50 {
51  fTrajParam = G4ErrorFreeTrajParam( pos, mom );
52  Init();
53 }
54 
55 
56 //------------------------------------------------------------------------
57 G4ErrorFreeTrajState::G4ErrorFreeTrajState( const G4ErrorSurfaceTrajState& tpSD ) : G4ErrorTrajState( tpSD.GetParticleType(), tpSD.GetPosition(), tpSD.GetMomentum() )
58 {
59  // G4ThreeVector planeNormal = tpSD.GetPlaneNormal();
60  // G4double fPt = tpSD.GetMomentum()*planeNormal;//mom projected on normal to plane
61  // G4ErrorSurfaceTrajParam tpSDparam = tpSD.GetParameters();
62  // G4ThreeVector Psc = fPt * planeNormal + tpSDparam.GetPU()*tpSDparam.GetVectorU() + tpSD.GetPV()*tpSD.GetVectorW();
63 
64  fTrajParam = G4ErrorFreeTrajParam( fPosition, fMomentum );
65  Init();
66 
67  //----- Get the error matrix in SC coordinates
68  G4ErrorSurfaceTrajParam tpSDparam = tpSD.GetParameters();
69  G4double mom = fMomentum.mag();
70  G4double mom2 = fMomentum.mag2();
71  G4double TVW1 = std::sqrt( mom2 / ( mom2 + tpSDparam.GetPV()*tpSDparam.GetPV() + tpSDparam.GetPW()*tpSDparam.GetPW()) );
72  G4ThreeVector vTVW( TVW1, tpSDparam.GetPV()/mom * TVW1, tpSDparam.GetPW()/mom * TVW1 );
73  G4Vector3D vectorU = tpSDparam.GetVectorV().cross( tpSDparam.GetVectorW() );
74  G4Vector3D vTN = vTVW.x()*vectorU + vTVW.y()*tpSDparam.GetVectorV() + vTVW.z()*tpSDparam.GetVectorW();
75 
76 #ifdef G4EVERBOSE
77  if( iverbose >= 5){
78  G4double pc2 = std::asin( vTN.z() );
79  G4double pc3 = std::atan (vTN.y()/vTN.x());
80 
81  G4cout << " CHECK: pc2 " << pc2 << " = " << GetParameters().GetLambda() << " diff " << pc2-GetParameters().GetLambda() << G4endl;
82  G4cout << " CHECK: pc3 " << pc3 << " = " << GetParameters().GetPhi() << " diff " << pc3-GetParameters().GetPhi() << G4endl;
83  }
84 #endif
85 
86  //--- Get the unit vectors perp to P
87  G4double cosl = std::cos( GetParameters().GetLambda() );
88  if (cosl < 1.E-30) cosl = 1.E-30;
89  G4double cosl1 = 1./cosl;
90  G4Vector3D vUN(-vTN.y()*cosl1, vTN.x()*cosl1, 0. );
91  G4Vector3D vVN(-vTN.z()*vUN.y(), vTN.z()*vUN.x(), cosl );
92 
93  G4Vector3D vUperp = G4Vector3D( -fMomentum.y(), fMomentum.x(), 0.);
94  G4Vector3D vVperp = vUperp.cross( fMomentum );
95  vUperp *= 1./vUperp.mag();
96  vVperp *= 1./vVperp.mag();
97 
98 #ifdef G4EVERBOSE
99  if( iverbose >= 5 ){
100  G4cout << " CHECK: vUN " << vUN << " = " << vUperp << " diff " << (vUN-vUperp).mag() << G4endl;
101  G4cout << " CHECK: vVN " << vVN << " = " << vVperp << " diff " << (vVN-vVperp).mag() << G4endl;
102  }
103 #endif
104 
105  //get the dot products of vectors perpendicular to direction and vector defining SD plane
106  G4double dUU = vUperp * tpSD.GetVectorV();
107  G4double dUV = vUperp * tpSD.GetVectorW();
108  G4double dVU = vVperp * tpSD.GetVectorV();
109  G4double dVV = vVperp * tpSD.GetVectorW();
110 
111  //--- Get transformation first
112  G4ErrorMatrix transfM(5, 5, 1 );
113  //--- Get magnetic field
115  G4ThreeVector dir = fTrajParam.GetDirection();
116  G4double invCosTheta = 1./std::cos( dir.theta() );
117  G4cout << " dir="<<dir<<" invCosTheta "<<invCosTheta << G4endl;
118 
119  if( fCharge != 0 && field ) {
120  G4double pos1[3]; pos1[0] = fPosition.x()*cm; pos1[1] = fPosition.y()*cm; pos1[2] = fPosition.z()*cm;
121  G4double h1[3];
122  field->GetFieldValue( pos1, h1 );
123  G4ThreeVector HPre = G4ThreeVector( h1[0], h1[1], h1[2] ) / tesla *10.;
124  G4double magHPre = HPre.mag();
125  G4double invP = 1./fMomentum.mag();
126  G4double magHPreM = magHPre * invP;
127  if( magHPre != 0. ) {
128  G4double magHPreM2 = fCharge / magHPre;
129 
130  G4double Q = -magHPreM * c_light;
131  G4double sinz = -HPre*vUperp * magHPreM2;
132  G4double cosz = HPre*vVperp * magHPreM2;
133 
134  transfM[1][3] = -Q*dir.y()*sinz;
135  transfM[1][4] = -Q*dir.z()*sinz;
136  transfM[2][3] = -Q*dir.y()*cosz*invCosTheta;
137  transfM[2][4] = -Q*dir.z()*cosz*invCosTheta;
138  }
139  }
140 
141  transfM[0][0] = 1.;
142  transfM[1][1] = dir.x()*dVU;
143  transfM[1][2] = dir.x()*dVV;
144  transfM[2][1] = dir.x()*dUU*invCosTheta;
145  transfM[2][2] = dir.x()*dUV*invCosTheta;
146  transfM[3][3] = dUU;
147  transfM[3][4] = dUV;
148  transfM[4][3] = dVU;
149  transfM[4][4] = dVV;
150 
151  fError = G4ErrorTrajErr( tpSD.GetError().similarity( transfM ) );
152 
153 #ifdef G4EVERBOSE
154  if( iverbose >= 1) G4cout << "error matrix SD2SC " << fError << G4endl;
155  if( iverbose >= 4) G4cout << "G4ErrorFreeTrajState from SD " << *this << G4endl;
156 #endif
157 }
158 
159 
160 //------------------------------------------------------------------------
161 void G4ErrorFreeTrajState::Init()
162 {
164  BuildCharge();
165  theTransfMat = G4ErrorMatrix(5,5,0);
166  theFirstStep = true;
167 }
168 
169 //------------------------------------------------------------------------
170 void G4ErrorFreeTrajState::Dump( std::ostream& out ) const
171 {
172  out << *this;
173 }
174 
175 //------------------------------------------------------------------------
177 {
178  G4int ierr = 0;
179  fTrajParam.Update( aTrack );
180  UpdatePosMom( aTrack->GetPosition(), aTrack->GetMomentum() );
181  return ierr;
182 }
183 
184 
185 //------------------------------------------------------------------------
186 std::ostream& operator<<(std::ostream& out, const G4ErrorFreeTrajState& ts)
187 {
188  std::ios::fmtflags orig_flags = out.flags();
189 
190  out.setf(std::ios::fixed,std::ios::floatfield);
191 
192  ts.DumpPosMomError( out );
193 
194  out << " G4ErrorFreeTrajState: Params: " << ts.fTrajParam << G4endl;
195 
196  out.flags(orig_flags);
197 
198  return out;
199 }
200 
201 
202 //------------------------------------------------------------------------
204 {
205  G4double stepLengthCm = aTrack->GetStep()->GetStepLength()/cm;
206  if( G4ErrorPropagatorData::GetErrorPropagatorData()->GetStage() == G4ErrorStage_Deflation ) stepLengthCm *= -1.;
207 
209 
210  if( std::fabs(stepLengthCm) <= kCarTolerance/cm ) return 0;
211 
212 #ifdef G4EVERBOSE
213  if( iverbose >= 2 )G4cout << " G4ErrorFreeTrajState::PropagateError " << G4endl;
214  G4cout << "G4EP: iverbose="<< iverbose << G4endl;
215 #endif
216 
217  // * *** ERROR PROPAGATION ON A HELIX ASSUMING SC VARIABLES
218  G4Point3D vposPost = aTrack->GetPosition()/cm;
219  G4Vector3D vpPost = aTrack->GetMomentum()/GeV;
220  // G4Point3D vposPre = fPosition/cm;
221  // G4Vector3D vpPre = fMomentum/GeV;
222  G4Point3D vposPre = aTrack->GetStep()->GetPreStepPoint()->GetPosition()/cm;
223  G4Vector3D vpPre = aTrack->GetStep()->GetPreStepPoint()->GetMomentum()/GeV;
224  //correct to avoid propagation along Z
225  if( vpPre.mag() == vpPre.z() ) vpPre.setX( 1.E-6*MeV );
226  if( vpPost.mag() == vpPost.z() ) vpPost.setX( 1.E-6*MeV );
227 
228  G4double pPre = vpPre.mag();
229  G4double pPost = vpPost.mag();
230 #ifdef G4EVERBOSE
231  if( iverbose >= 2 ) {
232  G4cout << "G4EP: vposPre " << vposPre << G4endl
233  << "G4EP: vposPost " << vposPost << G4endl;
234  G4cout << "G4EP: vpPre " << vpPre << G4endl
235  << "G4EP: vpPost " << vpPost << G4endl;
236  G4cout << " err start step " << fError << G4endl;
237  G4cout << "G4EP: stepLengthCm " << stepLengthCm << G4endl;
238  }
239 #endif
240 
241  if( pPre == 0. || pPost == 0 ) return 2;
242  G4double pInvPre = 1./pPre;
243  G4double pInvPost = 1./pPost;
244  G4double deltaPInv = pInvPost - pInvPre;
245  if( iverbose >= 2 ) G4cout << "G4EP: pInvPre" << pInvPre<< " pInvPost:" << pInvPost<<" deltaPInv:" << deltaPInv<< G4endl;
246 
247 
248  G4Vector3D vpPreNorm = vpPre * pInvPre;
249  G4Vector3D vpPostNorm = vpPost * pInvPost;
250  if( iverbose >= 2 ) G4cout << "G4EP: vpPreNorm " << vpPreNorm << " vpPostNorm " << vpPostNorm << G4endl;
251  //return if propagation along Z??
252  if( 1. - std::fabs(vpPostNorm.z()) < kCarTolerance ) return 4;
253  G4double sinpPre = std::sin( vpPreNorm.theta() ); //cosine perpendicular to pPre = sine pPre
254  G4double sinpPost = std::sin( vpPostNorm.theta() ); //cosine perpendicular to pPost = sine pPost
255  G4double sinpPostInv = 1./std::sin( vpPreNorm.theta() );
256 
257 #ifdef G4EVERBOSE
258  if( iverbose >= 2 ) G4cout << "G4EP: cosl " << sinpPre << " cosl0 " << sinpPost << G4endl;
259 #endif
260  //* *** DEFINE TRANSFORMATION MATRIX BETWEEN X1 AND X2 FOR
261  //* *** NEUTRAL PARTICLE OR FIELDFREE REGION
262  G4ErrorMatrix transf(5, 5, 0 );
263 
264  transf[3][2] = stepLengthCm * sinpPost;
265  transf[4][1] = stepLengthCm;
266  for( size_t ii=0;ii < 5; ii++ ){
267  transf[ii][ii] = 1.;
268  }
269 #ifdef G4EVERBOSE
270  if( iverbose >= 2 ) {
271  G4cout << "G4EP: transf matrix neutral " << transf;
272  }
273 #endif
274 
275  // charge X propagation direction
276  G4double charge = aTrack->GetDynamicParticle()->GetCharge();
278  charge *= -1.;
279  }
280  // G4cout << " charge " << charge << G4endl;
281  //t check if particle has charge
282  //t if( charge == 0 ) goto 45;
283  // check if the magnetic field is = 0.
284 
285  //position is from geant4, it is assumed to be in mm (for debugging, eventually it will not be transformed)
286  //it is assumed vposPre[] is in cm and pos1[] is in mm.
287  G4double pos1[3]; pos1[0] = vposPre.x()*cm; pos1[1] = vposPre.y()*cm; pos1[2] = vposPre.z()*cm;
288  G4double pos2[3]; pos2[0] = vposPost.x()*cm; pos2[1] = vposPost.y()*cm; pos2[2] = vposPost.z()*cm;
289  G4double h1[3], h2[3];
290 
292  if( !field ) return 0; //goto 45
293 
294 
295 
296  // calculate transformation except it NEUTRAL PARTICLE OR FIELDFREE REGION
297  if( charge != 0. && field ) {
298 
299  field->GetFieldValue( pos1, h1 ); //here pos1[], pos2[] are in mm, not changed
300  field->GetFieldValue( pos2, h2 );
301  G4ThreeVector HPre = G4ThreeVector( h1[0], h1[1], h1[2] ) / tesla *10.; //10. is to get same dimensions as GEANT3 (kilogauss)
302  G4ThreeVector HPost= G4ThreeVector( h2[0], h2[1], h2[2] ) / tesla *10.;
303  G4double magHPre = HPre.mag();
304  G4double magHPost = HPost.mag();
305 #ifdef G4EVERBOSE
306  if( iverbose >= 2 ) {
307  G4cout << "G4EP: h1 = "
308  << h1[0] << ", " << h1[1] << ", " << h1[2] << G4endl;
309  G4cout << "G4EP: pos1/mm = "
310  << pos1[0] << ", " << pos1[1] << ", " << pos1[2] << G4endl;
311  G4cout << "G4EP: pos2/mm = "
312  << pos2[0] << ", " << pos2[1] << ", " << pos2[2] << G4endl;
313  G4cout << "G4EP: B-filed in KGauss HPre " << HPre << G4endl
314  << "G4EP: in KGauss HPost " << HPost << G4endl;
315  }
316 #endif
317 
318  if( magHPre + magHPost != 0. ) {
319 
320  //* *** CHECK WHETHER H*ALFA/P IS TOO DIFFERENT AT X1 AND X2
321  G4double gam;
322  if( magHPost != 0. ){
323  gam = HPost * vpPostNorm / magHPost;
324  }else {
325  gam = HPre * vpPreNorm / magHPre;
326  }
327 
328  // G4eMagneticLimitsProcess will limit the step, but based on an straight line trajectory
329  G4double alphaSqr = 1. - gam * gam;
330  G4double diffHSqr = ( HPre * pInvPre - HPost * pInvPost ).mag2();
331  G4double delhp6Sqr = 300.*300.;
332 #ifdef G4EVERBOSE
333  if( iverbose >= 2 ) {
334  G4cout << " G4EP: gam " << gam << " alphaSqr " << alphaSqr
335  << " diffHSqr " << diffHSqr << G4endl;
336  G4cout << " alpha= " << std::sqrt(alphaSqr) << G4endl;
337  }
338 #endif
339  if( diffHSqr * alphaSqr > delhp6Sqr ) return 3;
340 
341 
342  //* *** DEFINE AVERAGE MAGNETIC FIELD AND GRADIENT
343  G4double pInvAver = 1./(pInvPre + pInvPost );
344  G4double CFACT8 = 2.997925E-4;
345  //G4double HAver
346  G4ThreeVector vHAverNorm( (HPre*pInvPre + HPost*pInvPost ) * pInvAver * charge * CFACT8 );
347  G4double HAver = vHAverNorm.mag();
348  G4double invHAver = 1./HAver;
349  vHAverNorm *= invHAver;
350 #ifdef G4EVERBOSE
351  if( iverbose >= 2 ) G4cout << " G4EP: HaverNorm " << vHAverNorm << " magHAver " << HAver << " charge " << charge<< G4endl;
352 #endif
353 
354  G4double pAver = (pPre+pPost)*0.5;
355  G4double QAver = -HAver/pAver;
356  G4double thetaAver = QAver * stepLengthCm;
357  G4double sinThetaAver = std::sin(thetaAver);
358  G4double cosThetaAver = std::cos(thetaAver);
359  G4double gamma = vHAverNorm * vpPostNorm;
360  G4ThreeVector AN2 = vHAverNorm.cross( vpPostNorm );
361 
362 #ifdef G4EVERBOSE
363  if( iverbose >= 2 ) G4cout << " G4EP: AN2 " << AN2 << " gamma:"<<gamma<< " theta="<< thetaAver<<G4endl;
364 #endif
365  G4double AU = 1./vpPreNorm.perp();
366  //t G4ThreeVector vU( vpPreNorm.cross( G4ThreeVector(0.,0.,1.) ) * AU );
367  G4ThreeVector vUPre( -AU*vpPreNorm.y(),
368  AU*vpPreNorm.x(),
369  0. );
370  G4ThreeVector vVPre( -vpPreNorm.z()*vUPre.y(),
371  vpPreNorm.z()*vUPre.x(),
372  vpPreNorm.x()*vUPre.y() - vpPreNorm.y()*vUPre.x() );
373 
374  //
375  AU = 1./vpPostNorm.perp();
376  //t G4ThreeVector vU( vpPostNorm.cross( G4ThreeVector(0.,0.,1.) ) * AU );
377  G4ThreeVector vUPost( -AU*vpPostNorm.y(),
378  AU*vpPostNorm.x(),
379  0. );
380  G4ThreeVector vVPost( -vpPostNorm.z()*vUPost.y(),
381  vpPostNorm.z()*vUPost.x(),
382  vpPostNorm.x()*vUPost.y() - vpPostNorm.y()*vUPost.x() );
383 #ifdef G4EVERBOSE
384  G4cout << " vpPostNorm " << vpPostNorm << G4endl;
385  if( iverbose >= 2 ) G4cout << " G4EP: AU " << AU << " vUPre " << vUPre << " vVPre " << vVPre << " vUPost " << vUPost << " vVPost " << vVPost << G4endl;
386 #endif
387  G4Point3D deltaPos( vposPre - vposPost );
388 
389  // * *** COMPLETE TRANSFORMATION MATRIX BETWEEN ERRORS AT X1 AND X2
390  // * *** FIELD GRADIENT PERPENDICULAR TO TRACK IS PRESENTLY NOT
391  // * *** TAKEN INTO ACCOUNT
392 
393  G4double QP = QAver * pAver; // = -HAver
394 #ifdef G4EVERBOSE
395  if( iverbose >= 2) G4cout << " G4EP: QP " << QP << " QAver " << QAver << " pAver " << pAver << G4endl;
396 #endif
397  G4double ANV = -( vHAverNorm.x()*vUPost.x() + vHAverNorm.y()*vUPost.y() );
398  G4double ANU = ( vHAverNorm.x()*vVPost.x() + vHAverNorm.y()*vVPost.y() + vHAverNorm.z()*vVPost.z() );
399  G4double OMcosThetaAver = 1. - cosThetaAver;
400 #ifdef G4EVERBOSE
401  if( iverbose >= 2) G4cout << "G4EP: OMcosThetaAver " << OMcosThetaAver << " cosThetaAver " << cosThetaAver << " thetaAver " << thetaAver << " QAver " << QAver << " stepLengthCm " << stepLengthCm << G4endl;
402 #endif
403  G4double TMSINT = thetaAver - sinThetaAver;
404 #ifdef G4EVERBOSE
405  if( iverbose >= 2 ) G4cout << " G4EP: ANV " << ANV << " ANU " << ANU << G4endl;
406 #endif
407 
408  G4ThreeVector vHUPre( -vHAverNorm.z() * vUPre.y(),
409  vHAverNorm.z() * vUPre.x(),
410  vHAverNorm.x() * vUPre.y() - vHAverNorm.y() * vUPre.x() );
411 #ifdef G4EVERBOSE
412  // if( iverbose >= 2 ) G4cout << "G4EP: HUPre(1) " << vHUPre.x() << " " << vHAverNorm.z() << " " << vUPre.y() << G4endl;
413 #endif
414  G4ThreeVector vHVPre( vHAverNorm.y() * vVPre.z() - vHAverNorm.z() * vVPre.y(),
415  vHAverNorm.z() * vVPre.x() - vHAverNorm.x() * vVPre.z(),
416  vHAverNorm.x() * vVPre.y() - vHAverNorm.y() * vVPre.x() );
417 #ifdef G4EVERBOSE
418  if( iverbose >= 2 ) G4cout << " G4EP: HUPre " << vHUPre << " HVPre " << vHVPre << G4endl;
419 #endif
420 
421  //------------------- COMPUTE MATRIX
422  //---------- 1/P
423 
424  transf[0][0] = 1.-deltaPInv*pAver*(1.+(vpPostNorm.x()*deltaPos.x()+vpPostNorm.y()*deltaPos.y()+vpPostNorm.z()*deltaPos.z())/stepLengthCm)
425  +2.*deltaPInv*pAver;
426 
427  transf[0][1] = -deltaPInv/thetaAver*
428  ( TMSINT*gamma*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) +
429  sinThetaAver*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z()) +
430  OMcosThetaAver*(vHVPre.x()*vpPostNorm.x()+vHVPre.y()*vpPostNorm.y()+vHVPre.z()*vpPostNorm.z()) );
431 
432  transf[0][2] = -sinpPre*deltaPInv/thetaAver*
433  ( TMSINT*gamma*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() ) +
434  sinThetaAver*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y() ) +
435  OMcosThetaAver*(vHUPre.x()*vpPostNorm.x()+vHUPre.y()*vpPostNorm.y()+vHUPre.z()*vpPostNorm.z()) );
436 
437  transf[0][3] = -deltaPInv/stepLengthCm*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y() );
438 
439  transf[0][4] = -deltaPInv/stepLengthCm*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z());
440 
441  // *** Lambda
442  transf[1][0] = -QP*ANV*(vpPostNorm.x()*deltaPos.x()+vpPostNorm.y()*deltaPos.y()+vpPostNorm.z()*deltaPos.z())
443  *(1.+deltaPInv*pAver);
444 #ifdef G4EVERBOSE
445  if(iverbose >= 3) G4cout << "ctransf10= " << transf[1][0] << " " << -QP<< " " << ANV<< " " << vpPostNorm.x()<< " " << deltaPos.x()<< " " << vpPostNorm.y()<< " " << deltaPos.y()<< " " << vpPostNorm.z()<< " " << deltaPos.z()
446  << " " << deltaPInv<< " " << pAver << G4endl;
447 #endif
448 
449  transf[1][1] = cosThetaAver*(vVPre.x()*vVPost.x()+vVPre.y()*vVPost.y()+vVPre.z()*vVPost.z()) +
450  sinThetaAver*(vHVPre.x()*vVPost.x()+vHVPre.y()*vVPost.y()+vHVPre.z()*vVPost.z()) +
451  OMcosThetaAver*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z())*
452  (vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z()) +
453  ANV*( -sinThetaAver*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z()) +
454  OMcosThetaAver*(vVPre.x()*AN2.x()+vVPre.y()*AN2.y()+vVPre.z()*AN2.z()) -
455  TMSINT*gamma*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) );
456 
457  transf[1][2] = cosThetaAver*(vUPre.x()*vVPost.x()+vUPre.y()*vVPost.y() ) +
458  sinThetaAver*(vHUPre.x()*vVPost.x()+vHUPre.y()*vVPost.y()+vHUPre.z()*vVPost.z()) +
459  OMcosThetaAver*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() )*
460  (vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z()) +
461  ANV*( -sinThetaAver*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y() ) +
462  OMcosThetaAver*(vUPre.x()*AN2.x()+vUPre.y()*AN2.y() ) -
463  TMSINT*gamma*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() ) );
464  transf[1][2] = sinpPre*transf[1][2];
465 
466  transf[1][3] = -QAver*ANV*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y() );
467 
468  transf[1][4] = -QAver*ANV*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z());
469 
470  // *** Phi
471 
472  transf[2][0] = -QP*ANU*(vpPostNorm.x()*deltaPos.x()+vpPostNorm.y()*deltaPos.y()+vpPostNorm.z()*deltaPos.z())*sinpPostInv
473  *(1.+deltaPInv*pAver);
474 #ifdef G4EVERBOSE
475  if(iverbose >= 3)G4cout <<"ctransf20= " << transf[2][0] <<" "<< -QP<<" "<<ANU<<" "<<vpPostNorm.x()<<" "<<deltaPos.x()<<" "<<vpPostNorm.y()<<" "<<deltaPos.y()<<" "<<vpPostNorm.z()<<" "<<deltaPos.z()<<" "<<sinpPostInv
476  <<" "<<deltaPInv<<" "<<pAver<< G4endl;
477 #endif
478  transf[2][1] = cosThetaAver*(vVPre.x()*vUPost.x()+vVPre.y()*vUPost.y() ) +
479  sinThetaAver*(vHVPre.x()*vUPost.x()+vHVPre.y()*vUPost.y() ) +
480  OMcosThetaAver*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z())*
481  (vHAverNorm.x()*vUPost.x()+vHAverNorm.y()*vUPost.y() ) +
482  ANU*( -sinThetaAver*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z()) +
483  OMcosThetaAver*(vVPre.x()*AN2.x()+vVPre.y()*AN2.y()+vVPre.z()*AN2.z()) -
484  TMSINT*gamma*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) );
485  transf[2][1] = sinpPostInv*transf[2][1];
486 
487  transf[2][2] = cosThetaAver*(vUPre.x()*vUPost.x()+vUPre.y()*vUPost.y() ) +
488  sinThetaAver*(vHUPre.x()*vUPost.x()+vHUPre.y()*vUPost.y() ) +
489  OMcosThetaAver*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() )*
490  (vHAverNorm.x()*vUPost.x()+vHAverNorm.y()*vUPost.y() ) +
491  ANU*( -sinThetaAver*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y() ) +
492  OMcosThetaAver*(vUPre.x()*AN2.x()+vUPre.y()*AN2.y() ) -
493  TMSINT*gamma*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() ) );
494  transf[2][2] = sinpPostInv*sinpPre*transf[2][2];
495 
496  transf[2][3] = -QAver*ANU*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y() )*sinpPostInv;
497 #ifdef G4EVERBOSE
498  if(iverbose >= 3)G4cout <<"ctransf23= " << transf[2][3] <<" "<< -QAver<<" "<<ANU<<" "<<vUPre.x()<<" "<<vpPostNorm.x()<<" "<< vUPre.y()<<" "<<vpPostNorm.y()<<" "<<sinpPostInv<<G4endl;
499 #endif
500 
501  transf[2][4] = -QAver*ANU*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z())*sinpPostInv;
502 
503  // *** Yt
504 
505  transf[3][0] = pAver*(vUPost.x()*deltaPos.x()+vUPost.y()*deltaPos.y() )
506  *(1.+deltaPInv*pAver);
507 #ifdef G4EVERBOSE
508  if(iverbose >= 3) G4cout <<"ctransf30= " << transf[3][0] <<" "<< pAver<<" "<<vUPost.x()<<" "<<deltaPos.x()<<" "<<vUPost.y()<<" "<<deltaPos.y()
509  <<" "<<deltaPInv<<" "<<pAver<<G4endl;
510 #endif
511 
512  transf[3][1] = ( sinThetaAver*(vVPre.x()*vUPost.x()+vVPre.y()*vUPost.y() ) +
513  OMcosThetaAver*(vHVPre.x()*vUPost.x()+vHVPre.y()*vUPost.y() ) +
514  TMSINT*(vHAverNorm.x()*vUPost.x()+vHAverNorm.y()*vUPost.y() )*
515  (vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) )/QAver;
516 
517  transf[3][2] = ( sinThetaAver*(vUPre.x()*vUPost.x()+vUPre.y()*vUPost.y() ) +
518  OMcosThetaAver*(vHUPre.x()*vUPost.x()+vHUPre.y()*vUPost.y() ) +
519  TMSINT*(vHAverNorm.x()*vUPost.x()+vHAverNorm.y()*vUPost.y() )*
520  (vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() ) )*sinpPre/QAver;
521 #ifdef G4EVERBOSE
522  if(iverbose >= 3) G4cout <<"ctransf32= " << transf[3][2] <<" "<< sinThetaAver<<" "<<vUPre.x()<<" "<<vUPost.x()<<" "<<vUPre.y()<<" "<<vUPost.y() <<" "<<
523  OMcosThetaAver<<" "<<vHUPre.x()<<" "<<vUPost.x()<<" "<<vHUPre.y()<<" "<<vUPost.y() <<" "<<
524  TMSINT<<" "<<vHAverNorm.x()<<" "<<vUPost.x()<<" "<<vHAverNorm.y()<<" "<<vUPost.y() <<" "<<
525  vHAverNorm.x()<<" "<<vUPre.x()<<" "<<vHAverNorm.y()<<" "<<vUPre.y() <<" "<<sinpPre<<" "<<QAver<<G4endl;
526 #endif
527 
528  transf[3][3] = (vUPre.x()*vUPost.x()+vUPre.y()*vUPost.y() );
529 
530  transf[3][4] = (vVPre.x()*vUPost.x()+vVPre.y()*vUPost.y() );
531 
532  // *** Zt
533  transf[4][0] = pAver*(vVPost.x()*deltaPos.x()+vVPost.y()*deltaPos.y()+vVPost.z()*deltaPos.z())
534  *(1.+deltaPInv*pAver);
535 
536  transf[4][1] = ( sinThetaAver*(vVPre.x()*vVPost.x()+vVPre.y()*vVPost.y()+vVPre.z()*vVPost.z()) +
537  OMcosThetaAver*(vHVPre.x()*vVPost.x()+vHVPre.y()*vVPost.y()+vHVPre.z()*vVPost.z()) +
538  TMSINT*(vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z())*
539  (vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) )/QAver;
540 #ifdef G4EVERBOSE
541  if(iverbose >= 3)G4cout <<"ctransf41= " << transf[4][1] <<" "<< sinThetaAver<<" "<< OMcosThetaAver <<" "<<TMSINT<<" "<< vVPre <<" "<<vVPost <<" "<<vHVPre<<" "<<vHAverNorm <<" "<< QAver<<G4endl;
542 #endif
543 
544  transf[4][2] = ( sinThetaAver*(vUPre.x()*vVPost.x()+vUPre.y()*vVPost.y() ) +
545  OMcosThetaAver*(vHUPre.x()*vVPost.x()+vHUPre.y()*vVPost.y()+vHUPre.z()*vVPost.z()) +
546  TMSINT*(vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z())*
547  (vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y() ) )*sinpPre/QAver;
548 
549  transf[4][3] = (vUPre.x()*vVPost.x()+vUPre.y()*vVPost.y() );
550 
551  transf[4][4] = (vVPre.x()*vVPost.x()+vVPre.y()*vVPost.y()+vVPre.z()*vVPost.z());
552  // if(iverbose >= 3) G4cout <<"ctransf44= " << transf[4][4] <<" "<< vVPre.x() <<" "<<vVPost.x() <<" "<< vVPre.y() <<" "<< vVPost.y() <<" "<< vVPre.z() <<" "<< vVPost.z() << G4endl;
553 
554 
555 #ifdef G4EVERBOSE
556  if( iverbose >= 1 ) G4cout << "G4EP: transf matrix computed " << transf << G4endl;
557 #endif
558  /* for( G4int ii=0;ii<5;ii++){
559  for( G4int jj=0;jj<5;jj++){
560  G4cout << transf[ii][jj] << " ";
561  }
562  G4cout << G4endl;
563  } */
564  }
565  }
566  // end of calculate transformation except it NEUTRAL PARTICLE OR FIELDFREE REGION
567  /* if( iverbose >= 1 ) G4cout << "G4EP: transf not updated but initialized " << theFirstStep << G4endl;
568  if( theFirstStep ) {
569  theTransfMat = transf;
570  theFirstStep = false;
571  }else{
572  theTransfMat = theTransfMat * transf;
573  if( iverbose >= 1 ) G4cout << "G4EP: transf matrix accumulated" << theTransfMat << G4endl;
574  }
575  */
576  theTransfMat = transf;
577 #ifdef G4EVERBOSE
578  if( iverbose >= 1 ) G4cout << "G4EP: error matrix before transformation " << fError << G4endl;
579  if( iverbose >= 2 ) G4cout << " tf * err " << theTransfMat * fError << G4endl
580  << " transf matrix " << theTransfMat.T() << G4endl;
581 #endif
582 
583  fError = fError.similarity(theTransfMat).T();
584  //- fError = transf * fError * transf.T();
585 #ifdef G4EVERBOSE
586  if( iverbose >= 1 ) G4cout << "G4EP: error matrix propagated " << fError << G4endl;
587 #endif
588 
589  //? S = B*S*BT S.similarity(B)
590  //? R = S
591  // not needed * *** TRANSFORM ERROR MATRIX FROM INTERNAL TO EXTERNAL VARIABLES;
592 
593  PropagateErrorMSC( aTrack );
594 
595  PropagateErrorIoni( aTrack );
596 
597  return 0;
598 }
599 
600 
601 //------------------------------------------------------------------------
602 G4int G4ErrorFreeTrajState::PropagateErrorMSC( const G4Track* aTrack )
603 {
604  G4ThreeVector vpPre = aTrack->GetMomentum()/GeV;
605  G4double pPre = vpPre.mag();
606  G4double pBeta = pPre*pPre / (aTrack->GetTotalEnergy()/GeV);
607  G4double stepLengthCm = aTrack->GetStep()->GetStepLength()/cm;
608 
609  G4Material* mate = aTrack->GetVolume()->GetLogicalVolume()->GetMaterial();
610  G4double effZ, effA;
611  CalculateEffectiveZandA( mate, effZ, effA );
612 
613 #ifdef G4EVERBOSE
614  if( iverbose >= 4 ) G4cout << "material " << mate->GetName()
615  //<< " " << mate->GetZ() << " " << mate->GetA()
616  << " effZ:" << effZ << " effA:" << effA
617  << " dens(g/mole):" << mate->GetDensity()/g*mole << " Radlen/cm:" << mate->GetRadlen()/cm << " nuclLen/cm" << mate->GetNuclearInterLength()/cm << G4endl;
618 #endif
619 
620  G4double RI = stepLengthCm / (mate->GetRadlen()/cm);
621 #ifdef G4EVERBOSE
622  if( iverbose >= 4 ) G4cout << std::setprecision(6) << std::setw(6) << "G4EP:MSC: RI=X/X0 " << RI << " stepLengthCm " << stepLengthCm << " radlen/cm " << (mate->GetRadlen()/cm) << " RI*1.e10:" << RI*1.e10 << G4endl;
623 #endif
624  G4double charge = aTrack->GetDynamicParticle()->GetCharge();
625  G4double DD = 1.8496E-4*RI*(charge/pBeta * charge/pBeta );
626 #ifdef G4EVERBOSE
627  if( iverbose >= 3 ) G4cout << "G4EP:MSC: D*1E6= " << DD*1.E6 <<" pBeta " << pBeta << G4endl;
628 #endif
629  G4double S1 = DD*stepLengthCm*stepLengthCm/3.;
630  G4double S2 = DD;
631  G4double S3 = DD*stepLengthCm/2.;
632 
633  G4double CLA = std::sqrt( vpPre.x() * vpPre.x() + vpPre.y() * vpPre.y() )/pPre;
634 #ifdef G4EVERBOSE
635  if( iverbose >= 2 ) G4cout << std::setw(6) << "G4EP:MSC: RI " << RI << " S1 " << S1 << " S2 " << S2 << " S3 " << S3 << " CLA " << CLA << G4endl;
636 #endif
637  fError[1][1] += S2;
638  fError[1][4] -= S3;
639  fError[2][2] += S2/CLA/CLA;
640  fError[2][3] += S3/CLA;
641  fError[3][3] += S1;
642  fError[4][4] += S1;
643 
644 #ifdef G4EVERBOSE
645  if( iverbose >= 2 ) G4cout << "G4EP:MSC: error matrix propagated msc " << fError << G4endl;
646 #endif
647 
648  return 0;
649 }
650 
651 
652 //------------------------------------------------------------------------
653 void G4ErrorFreeTrajState::CalculateEffectiveZandA( const G4Material* mate, G4double& effZ, G4double& effA )
654 {
655  effZ = 0.;
656  effA = 0.;
657  G4int ii, nelem = mate->GetNumberOfElements();
658  const G4double* fracVec = mate->GetFractionVector();
659  for(ii=0; ii < nelem; ii++ ) {
660  effZ += mate->GetElement( ii )->GetZ() * fracVec[ii];
661  effA += mate->GetElement( ii )->GetA() * fracVec[ii] /g*mole;
662  }
663 
664 }
665 
666 
667 //------------------------------------------------------------------------
668 G4int G4ErrorFreeTrajState::PropagateErrorIoni( const G4Track* aTrack )
669 {
670  G4double stepLengthCm = aTrack->GetStep()->GetStepLength()/cm;
671 #ifdef G4EVERBOSE
672  G4double DEDX2;
673  if( stepLengthCm < 1.E-7 ) {
674  DEDX2=0.;
675  }
676 #endif
677  // * Calculate xi factor (KeV).
678  G4Material* mate = aTrack->GetVolume()->GetLogicalVolume()->GetMaterial();
679  G4double effZ, effA;
680  CalculateEffectiveZandA( mate, effZ, effA );
681 
682  G4double Etot = aTrack->GetTotalEnergy()/GeV;
683  G4double beta = aTrack->GetMomentum().mag()/GeV / Etot;
684  G4double mass = aTrack->GetDynamicParticle()->GetMass() / GeV;
685  G4double gamma = Etot / mass;
686 
687  // * Calculate xi factor (keV).
688  G4double XI = 153.5*effZ*stepLengthCm*(mate->GetDensity()/mg*mole) /
689  (effA*beta*beta);
690 
691 #ifdef G4EVERBOSE
692  if( iverbose >= 2 ){
693  G4cout << "G4EP:IONI: XI/keV " << XI << " beta " << beta << " gamma " << gamma << G4endl;
694  G4cout << " density " << (mate->GetDensity()/mg*mole) << " effA " << effA << " step " << stepLengthCm << G4endl;
695  }
696 #endif
697  // * Maximum energy transfer to atomic electron (KeV).
698  G4double eta = beta*gamma;
699  G4double etasq = eta*eta;
700  G4double eMass = 0.51099906/GeV;
701  G4double massRatio = eMass / mass;
702  G4double F1 = 2*eMass*etasq;
703  G4double F2 = 1. + 2. * massRatio * gamma + massRatio * massRatio;
704  G4double Emax = 1.E+6*F1/F2; // now in keV
705 
706  // * *** and now sigma**2 in GeV
707  G4double dedxSq = XI*Emax*(1.-(beta*beta/2.))*1.E-12; // now in GeV^2
708  /*The above formula for var(1/p) good for dens scatterers. However, for MIPS passing
709  through a gas it leads to overestimation. Further more for incident electrons
710  the Emax is almost equal to incident energy.
711  This leads to k=Xi/Emax as small as e-6 and gradually the cov matrix explodes.
712 
713  http://www2.pv.infn.it/~rotondi/kalman_1.pdf
714 
715  Since I do not have enough info at the moment to implement Landau & sub-Landau models for k=Xi/Emax <0.01 I'll saturate k at this value for now
716  */
717 
718  if (XI/Emax<0.01) dedxSq *=XI/Emax*100 ;// Quench for low Elos, see above: newVar=odVar *k/0.01
719 
720 #ifdef G4EVERBOSE
721  if( iverbose >= 2 ) G4cout << "G4EP:IONI: DEDX^2(GeV^2) " << dedxSq << " emass/GeV: " << eMass << " Emax/keV: " << Emax
722  <<" k=Xi/Emax="<< XI/Emax<< G4endl;
723 
724 #endif
725 
726  G4double pPre6 = (aTrack->GetStep()->GetPreStepPoint()->GetMomentum()/GeV).mag();
727  pPre6 = std::pow(pPre6, 6 );
728  //Apply it to error
729  fError[0][0] += Etot*Etot*dedxSq / pPre6;
730 #ifdef G4EVERBOSE
731  if( iverbose >= 2 ) G4cout << "G4:IONI Etot/GeV: " << Etot << " err_dedx^2/GeV^2: " << dedxSq << " p^6: " << pPre6 << G4endl;
732  if( iverbose >= 2 ) G4cout << "G4EP:IONI: error2_from_ionisation " << (Etot*Etot*dedxSq) / pPre6 << G4endl;
733 #endif
734 
735  return 0;
736 }
static constexpr double tesla
Definition: G4SIunits.hh:268
G4ErrorSymMatrix G4ErrorTrajErr
G4Material * GetMaterial() const
static constexpr double mg
Definition: G4SIunits.hh:184
G4ErrorSymMatrix similarity(const G4ErrorMatrix &m1) const
CLHEP::Hep3Vector G4ThreeVector
G4double GetStepLength() const
virtual void GetFieldValue(const double Point[4], double *fieldArr) const =0
double x() const
const G4DynamicParticle * GetDynamicParticle() const
G4double GetPhi() const
const G4String & GetName() const
Definition: G4Material.hh:178
G4double GetLambda() const
const G4ThreeVector & GetPosition() const
G4double GetSurfaceTolerance() const
G4double GetZ() const
Definition: G4Element.hh:131
G4ErrorTrajErr fError
G4double GetDensity() const
Definition: G4Material.hh:180
static double Q[]
G4ThreeVector GetMomentum() const
HepGeom::Vector3D< G4double > G4Vector3D
Definition: G4Vector3D.hh:35
G4ErrorSymMatrix T() const
const G4Element * GetElement(G4int iel) const
Definition: G4Material.hh:202
const G4Step * GetStep() const
G4double GetA() const
Definition: G4Element.hh:139
int G4int
Definition: G4Types.hh:78
double z() const
G4StepPoint * GetPreStepPoint() const
function g(Y1, Y2, PT2)
Definition: hijing1.383.f:5205
G4GLOB_DLL std::ostream G4cout
const G4ThreeVector & GetPosition() const
virtual void Dump(std::ostream &out=G4cout) const
G4double GetMass() const
G4ErrorSurfaceTrajParam GetParameters() const
G4Vector3D GetDirection() const
static constexpr double cm
Definition: G4SIunits.hh:119
G4double GetCharge() const
const G4double kCarTolerance
G4double GetRadlen() const
Definition: G4Material.hh:220
void DumpPosMomError(std::ostream &out=G4cout) const
double theta() const
static G4TransportationManager * GetTransportationManager()
G4FieldManager * GetFieldManager() const
void Update(const G4Track *aTrack)
G4ErrorMatrix T() const
G4ThreeVector GetMomentum() const
G4LogicalVolume * GetLogicalVolume() const
double y() const
std::ostream & operator<<(std::ostream &, const BasicVector3D< float > &)
static constexpr double GeV
Definition: G4SIunits.hh:217
G4VPhysicalVolume * GetVolume() const
G4double GetTotalEnergy() const
virtual G4int Update(const G4Track *aTrack)
static const G4double Emax
#define G4endl
Definition: G4ios.hh:61
static constexpr double MeV
Definition: G4SIunits.hh:214
size_t GetNumberOfElements() const
Definition: G4Material.hh:186
Hep3Vector cross(const Hep3Vector &) const
void UpdatePosMom(const G4Point3D &pos, const G4Vector3D &mom)
double G4double
Definition: G4Types.hh:76
static G4ErrorPropagatorData * GetErrorPropagatorData()
virtual G4int PropagateError(const G4Track *aTrack)
const G4Field * GetDetectorField() const
double perp() const
const G4double * GetFractionVector() const
Definition: G4Material.hh:194
double mag() const
static constexpr double mole
Definition: G4SIunits.hh:286
BasicVector3D< T > cross(const BasicVector3D< T > &v) const
float c_light
Definition: hepunit.py:257
G4double GetNuclearInterLength() const
Definition: G4Material.hh:223
static const G4double pos
static G4GeometryTolerance * GetInstance()
G4ErrorTrajErr GetError() const
G4ErrorFreeTrajParam GetParameters() const