Geant4  10.03.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4ChipsKaonPlusInelasticXS.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28 //
29 //
30 // G4 Physics class: G4QKaonPlusNuclearCrossSection for gamma+A cross sections
31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
33 //
34 // --------------------------------------------------------------------------------
35 // Short description: Cross-sections extracted from the CHIPS package for
36 // kaon(minus)-nuclear interactions. Author: M. Kossov
37 // -------------------------------------------------------------------------------------
38 //
39 
41 #include "G4SystemOfUnits.hh"
42 #include "G4DynamicParticle.hh"
43 #include "G4ParticleDefinition.hh"
44 #include "G4KaonPlus.hh"
45 #include "G4Proton.hh"
46 #include "G4PionPlus.hh"
47 #include "G4AutoLock.hh"
48 
49 // factory
50 #include "G4CrossSectionFactory.hh"
51 //
53 
54 namespace {
55  const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
56  const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
57  const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
58  const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
59  const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
60  const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
61  const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
62  const G4int nH=224; // A#of HEN points in lnE
63  const G4double milP=std::log(Pmin);// Low logarithm energy for the HEN part
64  const G4double malP=std::log(Pmax);// High logarithm energy (each 2.75 percent)
65  const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
66  const G4double milPG=std::log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
67  const G4double third=1./3.;
69  G4double prM;// = G4Proton::Proton()->GetPDGMass(); // Proton mass in MeV
70  G4double piM;// = G4PionPlus::PionPlus()->GetPDGMass()+.1; // Pion mass in MeV+Safety (WP)??
71  G4double pM;// = G4KaonPlus::KaonPlus()->GetPDGMass(); // Projectile mass in MeV
72  G4double tpM;//= pM+pM; // Doubled projectile mass (MeV)
73 }
74 
76 {
77  G4AutoLock l(&initM);
78  prM = G4Proton::Proton()->GetPDGMass(); // Proton mass in MeV
79  piM = G4PionPlus::PionPlus()->GetPDGMass()+.1; // Pion mass in MeV+Safety (WP)??
80  pM = G4KaonPlus::KaonPlus()->GetPDGMass(); // Projectile mass in MeV
81  tpM = pM+pM; // Doubled projectile mass (MeV)
82  l.unlock();
83  // Initialization of the
84  lastLEN=0; // Pointer to the lastArray of LowEn CS
85  lastHEN=0; // Pointer to the lastArray of HighEn CS
86  lastN=0; // The last N of calculated nucleus
87  lastZ=0; // The last Z of calculated nucleus
88  lastP=0.; // Last used in cross section Momentum
89  lastTH=0.; // Last threshold momentum
90  lastCS=0.; // Last value of the Cross Section
91  lastI=0; // The last position in the DAMDB
92  LEN = new std::vector<G4double*>;
93  HEN = new std::vector<G4double*>;
94 }
95 
97 {
98  G4int lens=LEN->size();
99  for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
100  delete LEN;
101 
102  G4int hens=HEN->size();
103  for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
104  delete HEN;
105 }
106 
107 void
109 {
110  outFile << "G4ChipsKaonPlusInelasticXS provides the inelastic cross\n"
111  << "section for K+ nucleus scattering as a function of incident\n"
112  << "momentum. The cross section is calculated using M. Kossov's\n"
113  << "CHIPS parameterization of cross section data.\n";
114 }
115 
117  const G4Element*,
118  const G4Material*)
119 {
120  return true;
121 }
122 
123 
124 // The main member function giving the collision cross section (P is in IU, CS is in mb)
125 // Make pMom in independent units ! (Now it is MeV)
127  const G4Isotope*,
128  const G4Element*,
129  const G4Material*)
130 {
131  G4double pMom=Pt->GetTotalMomentum();
132  G4int tgN = A - tgZ;
133 
134  return GetChipsCrossSection(pMom, tgZ, tgN, 321);
135 }
136 
138 {
139 
140  G4bool in=false; // By default the isotope must be found in the AMDB
141  if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
142  {
143  in = false; // By default the isotope haven't be found in AMDB
144  lastP = 0.; // New momentum history (nothing to compare with)
145  lastN = tgN; // The last N of the calculated nucleus
146  lastZ = tgZ; // The last Z of the calculated nucleus
147  lastI = colN.size(); // Size of the Associative Memory DB in the heap
148  j = 0; // A#0f records found in DB for this projectile
149 
150  if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
151  {
152  if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
153  {
154  lastI=i; // Remember the index for future fast/last use
155  lastTH =colTH[i]; // The last THreshold (A-dependent)
156 
157  if(pMom<=lastTH)
158  {
159  return 0.; // Energy is below the Threshold value
160  }
161  lastP =colP [i]; // Last Momentum (A-dependent)
162  lastCS =colCS[i]; // Last CrossSect (A-dependent)
163  in = true; // This is the case when the isotop is found in DB
164  // Momentum pMom is in IU ! @@ Units
165  lastCS=CalculateCrossSection(-1,j,321,lastZ,lastN,pMom); // read & update
166 
167  if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
168  {
169  lastCS=0.;
170  lastTH=pMom;
171  }
172  break; // Go out of the LOOP
173  }
174  j++; // Increment a#0f records found in DB
175  }
176  if(!in) // This isotope has not been calculated previously
177  {
179  lastCS=CalculateCrossSection(0,j,321,lastZ,lastN,pMom); //calculate & create
180 
181  //if(lastCS>0.) // It means that the AMBD was initialized
182  //{
183 
184  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
185  colN.push_back(tgN);
186  colZ.push_back(tgZ);
187  colP.push_back(pMom);
188  colTH.push_back(lastTH);
189  colCS.push_back(lastCS);
190  //} // M.K. Presence of H1 with high threshold breaks the syncronization
191  return lastCS*millibarn;
192  } // End of creation of the new set of parameters
193  else
194  {
195  colP[lastI]=pMom;
196  colCS[lastI]=lastCS;
197  }
198  } // End of parameters udate
199  else if(pMom<=lastTH)
200  {
201  return 0.; // Momentum is below the Threshold Value -> CS=0
202  }
203  else // It is the last used -> use the current tables
204  {
205  lastCS=CalculateCrossSection(1,j,321,lastZ,lastN,pMom); // Only read and UpdateDB
206  lastP=pMom;
207  }
208  return lastCS*millibarn;
209 }
210 
211 // The main member function giving the gamma-A cross section (E in GeV, CS in mb)
212 G4double G4ChipsKaonPlusInelasticXS::CalculateCrossSection(G4int F, G4int I,
213  G4int, G4int targZ, G4int targN, G4double Momentum)
214 {
215  G4double sigma=0.;
216  if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
217  G4double A=targN+targZ; // A of the target
218 
219  if(F<=0) // This isotope was not the last used isotop
220  {
221  if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
222  {
223  G4int sync=LEN->size();
224  if(sync<=I) G4cerr<<"*!*G4ChipsKPlusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
225  lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
226  lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
227  }
228  else // This isotope wasn't calculated before => CREATE
229  {
230  lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
231  lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
232  // --- Instead of making a separate function ---
233  G4double P=THmiG; // Table threshold in GeV/c
234  for(G4int k=0; k<nL; k++)
235  {
236  lastLEN[k] = CrossSectionLin(targZ, targN, P);
237  P+=dPG;
238  }
239  G4double lP=milPG;
240  for(G4int n=0; n<nH; n++)
241  {
242  lastHEN[n] = CrossSectionLog(targZ, targN, lP);
243  lP+=dlP;
244  }
245  // --- End of possible separate function
246  // *** The synchronization check ***
247  G4int sync=LEN->size();
248  if(sync!=I)
249  {
250  G4cerr<<"***G4ChipsKPlusNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
251  <<", N="<<targN<<", F="<<F<<G4endl;
252  //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
253  }
254  LEN->push_back(lastLEN); // remember the Low Energy Table
255  HEN->push_back(lastHEN); // remember the High Energy Table
256  } // End of creation of the new set of parameters
257  } // End of parameters udate
258  // =--------------------------= NOW the Magic Formula =---------------------------------=
259 
260  if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
261  else if (Momentum<Pmin) // Low Energy region
262  {
263  if(A<=1. && Momentum < 600.) sigma=0.; // Approximation tot/el uncertainty
264  else sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
265  }
266  else if (Momentum<Pmax) // High Energy region
267  {
268  G4double lP=std::log(Momentum);
269  sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
270  }
271  else // UHE region (calculation, not frequent)
272  {
273  G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
274  sigma=CrossSectionFormula(targZ, targN, P, std::log(P));
275  }
276  if(sigma<0.) return 0.;
277  return sigma;
278 }
279 
280 // Electromagnetic momentum-threshold (in MeV/c)
281 G4double G4ChipsKaonPlusInelasticXS::ThresholdMomentum(G4int tZ, G4int tN)
282 {
283  G4double tA=tZ+tN;
284  if(tZ<.99 || tN<0.) return 0.;
285  G4double tM=931.5*tA;
286  G4double dE=piM; // At least one Pi0 must be created
287  if(tZ==1 && tN==0) tM=prM; // A threshold on the free proton
288  else dE=tZ/(1.+std::pow(tA,third)); // Safety for diffused edge of the nucleus (QE)
289  //G4double dE=1.263*tZ/(1.+std::pow(tA,third));
290  G4double T=dE+dE*(dE/2+pM)/tM;
291  return std::sqrt(T*(tpM+T));
292 }
293 
294 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
295 G4double G4ChipsKaonPlusInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
296 {
297  G4double lP=std::log(P);
298  return CrossSectionFormula(tZ, tN, P, lP);
299 }
300 
301 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
302 G4double G4ChipsKaonPlusInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
303 {
304  G4double P=std::exp(lP);
305  return CrossSectionFormula(tZ, tN, P, lP);
306 }
307 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
308 G4double G4ChipsKaonPlusInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
309  G4double P, G4double lP)
310 {
311  G4double sigma=0.;
312  if(tZ==1 && !tN) // KPlus-Proton interaction from G4QuasiElRatios
313  {
314  G4double ld=lP-3.5;
315  G4double ld2=ld*ld;
316  G4double sp=std::sqrt(P);
317  G4double p2=P*P;
318  G4double p4=p2*p2;
319  G4double lm=P-1.;
320  G4double md=lm*lm+.372;
321  G4double El=(.0557*ld2+2.23)/(1.-.7/sp+.1/p4);
322  G4double To=(.3*ld2+19.5)/(1.+.46/sp+1.6/p4);
323  sigma=(To-El)+.6/md;
324  }
325  else if(tZ<97 && tN<152) // General solution
326  {
327  G4double p2=P*P;
328  G4double p4=p2*p2;
329  G4double a=tN+tZ; // A of the target
330  G4double al=std::log(a);
331  G4double sa=std::sqrt(a);
332  G4double asa=a*sa;
333  G4double a2=a*a;
334  G4double a3=a2*a;
335  G4double a4=a2*a2;
336  G4double a8=a4*a4;
337  G4double a12=a8*a4;
338  G4double f=.6; // Default values for deutrons
339  G4double r=.5;
340  G4double gg=3.7;
341  G4double c=36.;
342  G4double ss=3.5;
343  G4double t=3.;
344  G4double u=.44;
345  G4double v=5.E-9;
346  if(tZ>1 && tN>1) // More than deuteron
347  {
348  f=1.;
349  r=1./(1.+.007*a2);
350  gg=4.2;
351  c=52.*std::exp(al*.6)*(1.+95./a2)/(1.+9./a)/(1.+46./a2);
352  ss=(40.+.14*a)/(1.+12./a);
353  G4double y=std::exp(al*1.7);
354  t=.185*y/(1.+.00012*y);
355  u=(1.+80./asa)/(1.+200./asa);
356  v=(1.+3.E-6*a4*(1.+6.E-7*a3+4.E10/a12))/a3/20000.;
357  }
358  G4double d=lP-gg;
359  G4double w=P-1.;
360  G4double rD=ss/(w*w+.36);
361  G4double h=P-.44;
362  G4double rR=t/(h*h+u*u);
363  sigma=(f*d*d+c)/(1.+r/std::sqrt(P)+1./p4)+(rD+rR)/(1+v/p4/p4);
364  }
365  else
366  {
367  G4cerr<<"-Warning-G4ChipsKaonPlusNuclearCroSect::CSForm:Bad A, Z="<<tZ<<", N="<<tN<<G4endl;
368  sigma=0.;
369  }
370  if(sigma<0.) return 0.;
371  return sigma;
372 }
373 
374 G4double G4ChipsKaonPlusInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
375 {
376  if(DX<=0. || N<2)
377  {
378  G4cerr<<"***G4ChipsKaonPlusInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
379  return Y[0];
380  }
381 
382  G4int N2=N-2;
383  G4double d=(X-X0)/DX;
384  G4int jj=static_cast<int>(d);
385  if (jj<0) jj=0;
386  else if(jj>N2) jj=N2;
387  d-=jj; // excess
388  G4double yi=Y[jj];
389  G4double sigma=yi+(Y[jj+1]-yi)*d;
390 
391  return sigma;
392 }
double Y(double density)
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
static const G4int nH
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
static const G4int nL
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
int G4int
Definition: G4Types.hh:78
#define G4MUTEX_INITIALIZER
Definition: G4Threading.hh:175
static double P[]
G4double GetTotalMomentum() const
static const G4double dE
double A(double temperature)
bool G4bool
Definition: G4Types.hh:79
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
const G4int n
tuple v
Definition: test.py:18
G4int G4Mutex
Definition: G4Threading.hh:173
#define G4_DECLARE_XS_FACTORY(cross_section)
G4double GetPDGMass() const
#define G4endl
Definition: G4ios.hh:61
**D E S C R I P T I O N
Definition: HEPEvtcom.cc:77
double G4double
Definition: G4Types.hh:76
static G4KaonPlus * KaonPlus()
Definition: G4KaonPlus.cc:113
tuple c
Definition: test.py:13
static const G4double THmin
static constexpr double millibarn
Definition: G4SIunits.hh:106
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
G4GLOB_DLL std::ostream G4cerr
virtual void CrossSectionDescription(std::ostream &) const