Geant4  10.03.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4ChipsAntiBaryonInelasticXS.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28 //
29 //
30 // G4 Physics class: G4ChipsAntiBaryonInelasticXS for gamma+A cross sections
31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
33 //
34 // -------------------------------------------------------------------------------------
35 // Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for
36 // anti-baryoninteractions. Original author: M. Kossov
37 // -------------------------------------------------------------------------------------
38 //
39 
41 #include "G4SystemOfUnits.hh"
42 #include "G4DynamicParticle.hh"
43 #include "G4ParticleDefinition.hh"
44 #include "G4AntiNeutron.hh"
45 #include "G4AntiProton.hh"
46 #include "G4AntiLambda.hh"
47 #include "G4AntiSigmaPlus.hh"
48 #include "G4AntiSigmaMinus.hh"
49 #include "G4AntiSigmaZero.hh"
50 #include "G4AntiXiMinus.hh"
51 #include "G4AntiXiZero.hh"
52 #include "G4AntiOmegaMinus.hh"
53 #include "G4Log.hh"
54 #include "G4Exp.hh"
55 #include "G4Pow.hh"
56 
57 // factory
58 #include "G4CrossSectionFactory.hh"
59 //
61 
63 {
64  lastLEN=0; // Pointer to lastArray of LowEn CS
65  lastHEN=0; // Pointer to lastArray of HighEn CS
66  lastN=0; // The last N of calculated nucleus
67  lastZ=0; // The last Z of calculated nucleus
68  lastP=0.; // Last used Cross Section Momentum
69  lastTH=0.; // Last threshold momentum
70  lastCS=0.; // Last value of the Cross Section
71  lastI=0; // The last position in the DAMDB
72  LEN = new std::vector<G4double*>;
73  HEN = new std::vector<G4double*>;
74 }
75 
77 {
78  G4int lens=LEN->size();
79  for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
80  delete LEN;
81  G4int hens=HEN->size();
82  for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
83  delete HEN;
84 }
85 
87 {
88  outFile << "G4ChipsAntiBaryonInelasticXS provides the inelastic cross\n"
89  << "section for anti-baryon nucleus scattering as a function of incident\n"
90  << "momentum. The cross section is calculated using M. Kossov's\n"
91  << "CHIPS parameterization of cross section data.\n";
92 }
93 
94 
96  const G4Element*,
97  const G4Material*)
98 {
99  /*
100  const G4ParticleDefinition* particle = Pt->GetDefinition();
101 
102  if(particle == G4AntiNeutron::AntiNeutron())
103  {
104  return true;
105  }
106  else if(particle == G4AntiProton::AntiProton())
107  {
108  return true;
109  }
110  else if(particle == G4AntiLambda::AntiLambda())
111  {
112  return true;
113  }
114  else if(particle == G4AntiSigmaPlus::AntiSigmaPlus())
115  {
116  return true;
117  }
118  else if(particle == G4AntiSigmaMinus::AntiSigmaMinus())
119  {
120  return true;
121  }
122  else if(particle == G4AntiSigmaZero::AntiSigmaZero())
123  {
124  return true;
125  }
126  else if(particle == G4AntiXiMinus::AntiXiMinus())
127  {
128  return true;
129  }
130  else if(particle == G4AntiXiZero::AntiXiZero())
131  {
132  return true;
133  }
134  else if(particle == G4AntiOmegaMinus::AntiOmegaMinus())
135  {
136  return true;
137  }
138  */
139  return true;
140 }
141 
142 // The main member function giving the collision cross section (P is in IU, CS is in mb)
143 // Make pMom in independent units ! (Now it is MeV)
145  const G4Isotope*,
146  const G4Element*,
147  const G4Material*)
148 {
149  G4double pMom=Pt->GetTotalMomentum();
150  G4int tgN = A - tgZ;
151  G4int pdg = Pt->GetDefinition()->GetPDGEncoding();
152 
153  return GetChipsCrossSection(pMom, tgZ, tgN, pdg);
154 }
155 
157 {
158 
159  G4bool in=false; // By default the isotope must be found in the AMDB
160  if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
161  {
162  in = false; // By default the isotope haven't be found in AMDB
163  lastP = 0.; // New momentum history (nothing to compare with)
164  lastN = tgN; // The last N of the calculated nucleus
165  lastZ = tgZ; // The last Z of the calculated nucleus
166  lastI = colN.size(); // Size of the Associative Memory DB in the heap
167  j = 0; // A#0f records found in DB for this projectile
168  if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
169  {
170  if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
171  {
172  lastI=i; // Remember the index for future fast/last use
173  lastTH =colTH[i]; // The last THreshold (A-dependent)
174  if(pMom<=lastTH)
175  {
176  return 0.; // Energy is below the Threshold value
177  }
178  lastP =colP [i]; // Last Momentum (A-dependent)
179  lastCS =colCS[i]; // Last CrossSect (A-dependent)
180  in = true; // This is the case when the isotop is found in DB
181  // Momentum pMom is in IU ! @@ Units
182  lastCS=CalculateCrossSection(-1,j,cPDG,lastZ,lastN,pMom); // read & update
183  if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
184  {
185  lastCS=0.;
186  lastTH=pMom;
187  }
188  break; // Go out of the LOOP
189  }
190  j++; // Increment a#0f records found in DB
191  }
192  if(!in) // This isotope has not been calculated previously
193  {
195  lastCS=CalculateCrossSection(0,j,cPDG,lastZ,lastN,pMom); //calculate & create
196  //if(lastCS>0.) // It means that the AMBD was initialized
197  //{
198 
199  lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
200  colN.push_back(tgN);
201  colZ.push_back(tgZ);
202  colP.push_back(pMom);
203  colTH.push_back(lastTH);
204  colCS.push_back(lastCS);
205  //} // M.K. Presence of H1 with high threshold breaks the syncronization
206  return lastCS*millibarn;
207  } // End of creation of the new set of parameters
208  else
209  {
210  colP[lastI]=pMom;
211  colCS[lastI]=lastCS;
212  }
213  } // End of parameters udate
214  else if(pMom<=lastTH)
215  {
216  return 0.; // Momentum is below the Threshold Value -> CS=0
217  }
218  else // It is the last used -> use the current tables
219  {
220  lastCS=CalculateCrossSection(1,j,cPDG,lastZ,lastN,pMom); // Only read and UpdateDB
221  lastP=pMom;
222  }
223  return lastCS*millibarn;
224 }
225 
226 // The main member function giving the gamma-A cross section (E in GeV, CS in mb)
227 G4double G4ChipsAntiBaryonInelasticXS::CalculateCrossSection(G4int F, G4int I,
228  G4int, G4int targZ, G4int targN, G4double Momentum)
229 {
230  static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
231  static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
232  static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
233  static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
234  static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
235  static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
236  static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
237  static const G4int nH=224; // A#of HEN points in lnE
238  static const G4double milP=G4Log(Pmin);// Low logarithm energy for the HEN part
239  static const G4double malP=G4Log(Pmax);// High logarithm energy (each 2.75 percent)
240  static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
241  static const G4double milPG=G4Log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
242  G4double sigma=0.;
243  if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
244  //G4double A=targN+targZ; // A of the target
245  if(F<=0) // This isotope was not the last used isotop
246  {
247  if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
248  {
249  G4int sync=LEN->size();
250  if(sync<=I) G4cerr<<"*!*G4QPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
251  lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
252  lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
253  }
254  else // This isotope wasn't calculated before => CREATE
255  {
256  lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
257  lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
258  // --- Instead of making a separate function ---
259  G4double P=THmiG; // Table threshold in GeV/c
260  for(G4int k=0; k<nL; k++)
261  {
262  lastLEN[k] = CrossSectionLin(targZ, targN, P);
263  P+=dPG;
264  }
265  G4double lP=milPG;
266  for(G4int n=0; n<nH; n++)
267  {
268  lastHEN[n] = CrossSectionLog(targZ, targN, lP);
269  lP+=dlP;
270  }
271  // --- End of possible separate function
272  // *** The synchronization check ***
273  G4int sync=LEN->size();
274  if(sync!=I)
275  {
276  G4cerr<<"***G4QPiMinusNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
277  <<", N="<<targN<<", F="<<F<<G4endl;
278  //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
279  }
280  LEN->push_back(lastLEN); // remember the Low Energy Table
281  HEN->push_back(lastHEN); // remember the High Energy Table
282  } // End of creation of the new set of parameters
283  } // End of parameters udate
284  // =-------------------= NOW the Magic Formula =--------------------=
285  if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
286  else if (Momentum<Pmin) // High Energy region
287  {
288  sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
289  }
290  else if (Momentum<Pmax) // High Energy region
291  {
292  G4double lP=G4Log(Momentum);
293  sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
294  }
295  else // UHE region (calculation, not frequent)
296  {
297  G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
298  sigma=CrossSectionFormula(targZ, targN, P, G4Log(P));
299  }
300  if(sigma<0.) return 0.;
301  return sigma;
302 }
303 
304 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
305 G4double G4ChipsAntiBaryonInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
306 {
307  G4double lP=G4Log(P);
308  return CrossSectionFormula(tZ, tN, P, lP);
309 }
310 
311 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
312 G4double G4ChipsAntiBaryonInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
313 {
314  G4double P=G4Exp(lP);
315  return CrossSectionFormula(tZ, tN, P, lP);
316 }
317 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
318 G4double G4ChipsAntiBaryonInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
319  G4double P, G4double lP)
320 {
321  G4double sigma=0.;
322  if(tZ==1 && !tN) // AntiBar-Prot interaction from G4QuasiElRatios
323  {
324  G4double ld=lP-3.5;
325  G4double ld2=ld*ld;
326  G4double ye=G4Exp(lP*1.25);
327  G4double yt=G4Exp(lP*0.35);
328  G4double El=80./(ye+1.);
329  G4double To=(80./yt+.3)/yt;
330  sigma=(To-El)+.2443*ld2+31.48;
331  }
332  else if(tZ==1 && tN==1)
333  {
334  G4double r=lP-3.7;
335  sigma=0.6*r*r+67.+90.*G4Exp(-lP*.666);
336  }
337  else if(tZ<97 && tN<152) // General solution
338  {
339  G4double d=lP-4.2;
340  G4double sp=std::sqrt(P);
341  G4double a=tN+tZ; // A of the target
342  G4double sa=std::sqrt(a);
343  G4double a2=a*a;
344  G4double a3=a2*a;
345  G4double a2s=a2*sa;
346  G4double c=(170.+3600./a2s)/(1.+65./a2s)+40.*G4Pow::GetInstance()->powA(a,0.712)/(1.+12.2/a)/(1.+34./a2);
347  G4double r=(170.+0.01*a3)/(1.+a3/28000.);
348  sigma=c+d*d+r/sp;
349  }
350  else
351  {
352  G4cerr<<"-Warning-G4QAntiBarNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
353  sigma=0.;
354  }
355  if(sigma<0.) return 0.;
356  return sigma;
357 }
358 
359 G4double G4ChipsAntiBaryonInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
360 {
361  if(DX<=0. || N<2)
362  {
363  G4cerr<<"***G4ChipsAntiBaryonInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
364  return Y[0];
365  }
366 
367  G4int N2=N-2;
368  G4double d=(X-X0)/DX;
369  G4int jj=static_cast<int>(d);
370  if (jj<0) jj=0;
371  else if(jj>N2) jj=N2;
372  d-=jj; // excess
373  G4double yi=Y[jj];
374  G4double sigma=yi+(Y[jj+1]-yi)*d;
375 
376  return sigma;
377 }
static G4Pow * GetInstance()
Definition: G4Pow.cc:55
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:259
double Y(double density)
static const G4int nH
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
G4ParticleDefinition * GetDefinition() const
static const G4int nL
virtual void CrossSectionDescription(std::ostream &) const
int G4int
Definition: G4Types.hh:78
static double P[]
G4double GetTotalMomentum() const
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
double A(double temperature)
bool G4bool
Definition: G4Types.hh:79
const G4int n
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
#define G4_DECLARE_XS_FACTORY(cross_section)
#define G4endl
Definition: G4ios.hh:61
**D E S C R I P T I O N
Definition: HEPEvtcom.cc:77
double G4double
Definition: G4Types.hh:76
tuple c
Definition: test.py:13
static const G4double THmin
static constexpr double millibarn
Definition: G4SIunits.hh:106
G4GLOB_DLL std::ostream G4cerr