Geant4  10.03.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4AffineTransform.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4AffineTransform.hh 98309 2016-07-06 10:30:15Z gcosmo $
28 //
29 //
30 // class G4AffineTransform
31 //
32 // Class description:
33 //
34 // A class for geometric affine transformations [see, eg. Foley & Van Dam]
35 // Supports efficient arbitrary rotation & transformation of vectors and the
36 // computation of compound & inverse transformations. A `rotation flag' is
37 // maintained internally for greater computational efficiency for transforms
38 // that do not involve rotation.
39 //
40 // Interfaces to the CLHEP classes G4ThreeVector & G4RotationMatrix
41 //
42 // For member function descriptions, see comments by declarations. For
43 // additional clarification, also check the `const' declarations for
44 // functions & their parameters.
45 //
46 // Member data:
47 //
48 // G4double rxx,rxy,rxz;
49 // G4double ryx,ryy,ryz; A 3x3 rotation matrix - net rotation
50 // G4double rzx,rzy,rzz;
51 // G4double tx,ty,tz; Net translation
52 
53 // History:
54 // Paul R C Kent 6 Aug 1996 - initial version
55 //
56 // 19.09.96 E.Chernyaev:
57 // - direct access to the protected members of the G4RotationMatrix class
58 // replaced by access via public access functions
59 // - conversion of the rotation matrix to angle & axis used to get
60 // a possibility to remove "friend" from the G4RotationMatrix class
61 // --------------------------------------------------------------------
62 #ifndef G4AFFINETRANSFORM_HH
63 #define G4AFFINETRANSFORM_HH
64 
65 #include "G4Types.hh"
66 #include "G4ThreeVector.hh"
67 #include "G4RotationMatrix.hh"
68 #include "G4Transform3D.hh"
69 
71 {
72 
73 public:
74 
75  inline G4AffineTransform();
76 
77 public: // with description
78 
79  inline G4AffineTransform(const G4ThreeVector& tlate);
80  // Translation only: under t'form translate point at origin by tlate
81 
82  inline G4AffineTransform(const G4RotationMatrix& rot);
83  // Rotation only: under t'form rotate by rot
84 
85  inline G4AffineTransform(const G4RotationMatrix& rot,
86  const G4ThreeVector& tlate);
87  // Under t'form: rotate by rot then translate by tlate
88 
89  inline G4AffineTransform(const G4RotationMatrix* rot,
90  const G4ThreeVector& tlate);
91  // Optionally rotate by *rot then translate by tlate - rot may be null
92 
93  inline G4AffineTransform operator * (const G4AffineTransform& tf) const;
94  // Compound Transforms:
95  // tf2=tf2*tf1 equivalent to tf2*=tf1
96  // Returns compound transformation of self*tf
97 
99  // (Modifying) Multiplies self by tf; Returns self reference
100  // ie. A=AB for a*=b
101 
102 
103  inline G4AffineTransform& Product(const G4AffineTransform& tf1,
104  const G4AffineTransform& tf2);
105  // 'Products' for avoiding (potential) temporaries:
106  // c.Product(a,b) equivalent to c=a*b
107  // c.InverseProduct(a*b,b ) equivalent to c=a
108  // (Modifying) Sets self=tf1*tf2; Returns self reference
109 
111  const G4AffineTransform& tf2);
112  // (Modifying) Sets self=tf1*(tf2^-1); Returns self reference
113 
114  inline G4ThreeVector TransformPoint(const G4ThreeVector& vec) const;
115  // Transform the specified point: returns vec*rot+tlate
116 
117  inline G4ThreeVector TransformAxis(const G4ThreeVector& axis) const;
118  // Transform the specified axis: returns
119 
120  inline void ApplyPointTransform(G4ThreeVector& vec) const;
121  // Transform the specified point (in place): sets vec=vec*rot+tlate
122 
123  inline void ApplyAxisTransform(G4ThreeVector& axis) const;
124  // Transform the specified axis (in place): sets axis=axis*rot;
125 
126  inline G4AffineTransform Inverse() const;
127  // Return inverse of current transform
128 
129  inline G4AffineTransform& Invert();
130  // (Modifying) Sets self=inverse of self; Returns self reference
131 
132  inline G4AffineTransform& operator +=(const G4ThreeVector& tlate);
133  inline G4AffineTransform& operator -=(const G4ThreeVector& tlate);
134  // (Modifying) Adjust net translation by given vector;
135  // Returns self reference
136 
137  inline G4bool operator == (const G4AffineTransform& tf) const;
138  inline G4bool operator != (const G4AffineTransform& tf) const;
139 
140  inline G4double operator [] (const G4int n) const;
141 
142  inline G4bool IsRotated() const;
143  // True if transform includes rotation
144 
145  inline G4bool IsTranslated() const;
146  // True if transform includes translation
147 
148  inline G4RotationMatrix NetRotation() const;
149 
150  inline G4ThreeVector NetTranslation() const;
151 
152  inline void SetNetRotation(const G4RotationMatrix& rot);
153 
154  inline void SetNetTranslation(const G4ThreeVector& tlate);
155 
156  inline operator G4Transform3D () const;
157  // Conversion operator (cast) to G4Transform3D
158 
159 private:
160 
161  inline G4AffineTransform(
162  const G4double prxx, const G4double prxy, const G4double prxz,
163  const G4double pryx, const G4double pryy, const G4double pryz,
164  const G4double przx, const G4double przy, const G4double przz,
165  const G4double ptx, const G4double pty, const G4double ptz);
166 
167  G4double rxx,rxy,rxz;
168  G4double ryx,ryy,ryz;
169  G4double rzx,rzy,rzz;
170  G4double tx,ty,tz;
171 };
172 
173 std::ostream& operator << (std::ostream& os, const G4AffineTransform& transf);
174 
175 #include "G4AffineTransform.icc"
176 
177 #endif
G4bool operator==(const G4AffineTransform &tf) const
G4AffineTransform & operator*=(const G4AffineTransform &tf)
G4AffineTransform Inverse() const
G4bool IsRotated() const
G4ThreeVector NetTranslation() const
void ApplyAxisTransform(G4ThreeVector &axis) const
int G4int
Definition: G4Types.hh:78
G4AffineTransform operator*(const G4AffineTransform &tf) const
G4AffineTransform & Invert()
G4AffineTransform & InverseProduct(const G4AffineTransform &tf1, const G4AffineTransform &tf2)
void SetNetTranslation(const G4ThreeVector &tlate)
void SetNetRotation(const G4RotationMatrix &rot)
G4bool operator!=(const G4AffineTransform &tf) const
bool G4bool
Definition: G4Types.hh:79
G4bool IsTranslated() const
HepGeom::Transform3D G4Transform3D
const G4int n
G4RotationMatrix NetRotation() const
G4ThreeVector TransformPoint(const G4ThreeVector &vec) const
G4ThreeVector TransformAxis(const G4ThreeVector &axis) const
std::ostream & operator<<(std::ostream &, const BasicVector3D< float > &)
G4AffineTransform & Product(const G4AffineTransform &tf1, const G4AffineTransform &tf2)
G4AffineTransform & operator+=(const G4ThreeVector &tlate)
double G4double
Definition: G4Types.hh:76
G4double operator[](const G4int n) const
G4AffineTransform & operator-=(const G4ThreeVector &tlate)
void ApplyPointTransform(G4ThreeVector &vec) const