Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4INCL::PionResonanceDecayChannel Class Reference

#include <G4INCLPionResonanceDecayChannel.hh>

Inheritance diagram for G4INCL::PionResonanceDecayChannel:
Collaboration diagram for G4INCL::PionResonanceDecayChannel:

Public Member Functions

 PionResonanceDecayChannel (Particle *, ThreeVector const &)
 
virtual ~PionResonanceDecayChannel ()
 
void fillFinalState (FinalState *fs)
 
- Public Member Functions inherited from G4INCL::IChannel
 IChannel ()
 
virtual ~IChannel ()
 
FinalStategetFinalState ()
 

Static Public Member Functions

static G4double computeDecayTime (Particle *p)
 

Detailed Description

Definition at line 49 of file G4INCLPionResonanceDecayChannel.hh.

Constructor & Destructor Documentation

G4INCL::PionResonanceDecayChannel::PionResonanceDecayChannel ( Particle p,
ThreeVector const &  dir 
)

Definition at line 51 of file G4INCLPionResonanceDecayChannel.cc.

52  :theParticle(p), incidentDirection(dir)
53  { }
const char * p
Definition: xmltok.h:285
G4INCL::PionResonanceDecayChannel::~PionResonanceDecayChannel ( )
virtual

Definition at line 55 of file G4INCLPionResonanceDecayChannel.cc.

55 {}

Member Function Documentation

G4double G4INCL::PionResonanceDecayChannel::computeDecayTime ( Particle p)
static

Definition at line 58 of file G4INCLPionResonanceDecayChannel.cc.

58  {
59  const G4double m = p->getMass();
60  const G4double geff = p->getEnergy()/m;
61 // const G4double geta = 1.31e-3;
62  const G4double gomega = 8.49;
63  G4double gg=0.;
64  switch (p->getType()) {
65 /* case Eta:
66  gg=geta;
67  break;*/
68  case Omega:
69  gg=gomega;
70  break;
71  default:
72  INCL_FATAL("Unrecognized pion resonance type; type=" << p->getType() << '\n');
73  break;
74  }
75  const G4double tpires = -G4INCL::PhysicalConstants::hc/gg*std::log(Random::shoot())*geff;
76  return tpires;
77  }
#define INCL_FATAL(x)
const char * p
Definition: xmltok.h:285
const G4double hc
[MeV*fm]
static constexpr double m
Definition: G4SIunits.hh:129
G4double shoot()
Definition: G4INCLRandom.cc:93
double G4double
Definition: G4Types.hh:76

Here is the call graph for this function:

void G4INCL::PionResonanceDecayChannel::fillFinalState ( FinalState fs)
virtual

Implements G4INCL::IChannel.

Definition at line 87 of file G4INCLPionResonanceDecayChannel.cc.

87  {
88 
89  ParticleType createdType;
90  ParticleType pionType1=Neutron; // to avoid forgetting pionType definition when 3 particles are emitted
91  ParticleType pionType2=Neutron;
92 
93  const G4double sqrtS = theParticle->getMass();
94  G4int nbpart = 3; // number of emitted particles
95  G4double drnd=Random::shoot();
96  switch (theParticle->getType()) {
97  case Eta:
98  if (drnd < 0.3972) { // renormalized to the only four decays taken into account here
99 // 2 photons
100  nbpart=2;
101  theParticle->setType(Photon);
102  createdType = Photon;
103  }
104  else if (drnd < 0.7265) {
105 // 3 pi0
106  theParticle->setType(PiZero);
107  pionType1 = PiZero;
108  pionType2 = PiZero;
109  }
110  else if (drnd < 0.9575) {
111 // pi+ pi- pi0
112  theParticle->setType(PiZero);
113  pionType1 = PiPlus;
114  pionType2 = PiMinus;
115  }
116  else {
117 // pi+ pi- photon
118  theParticle->setType(Photon);
119  pionType1 = PiPlus;
120  pionType2 = PiMinus;
121  }
122  break;
123  case Omega:
124  if (drnd < 0.9009) { // renormalized to the only three decays taken into account here
125 // pi+ pi- pi0
126  theParticle->setType(PiZero);
127  pionType1 = PiPlus;
128  pionType2 = PiMinus;
129  }
130  else if (drnd < 0.9845) {
131 // pi0 photon
132  nbpart=2;
133  theParticle->setType(PiZero);
134  createdType = Photon;
135  }
136  else {
137 // pi+ pi-
138  nbpart=2;
139  theParticle->setType(PiPlus);
140  createdType = PiMinus;
141  }
142  break;
143  default:
144  INCL_FATAL("Unrecognized pion resonance type; type=" << theParticle->getType() << '\n');
145  break;
146  }
147 
148  if (nbpart == 2) {
149  G4double fi, ctet, stet;
150  sampleAngles(&ctet, &stet, &fi);
151 
152  G4double cfi = std::cos(fi);
153  G4double sfi = std::sin(fi);
154  G4double beta = incidentDirection.mag();
155 
156  G4double q1, q2, q3;
157  G4double sal=0.0;
158  if (beta >= 1.0e-10)
159  sal = incidentDirection.perp()/beta;
160  if (sal >= 1.0e-6) {
161  G4double b1 = incidentDirection.getX();
162  G4double b2 = incidentDirection.getY();
163  G4double b3 = incidentDirection.getZ();
164  G4double cal = b3/beta;
165  G4double t1 = ctet+cal*stet*sfi/sal;
166  G4double t2 = stet/sal;
167  q1=(b1*t1+b2*t2*cfi)/beta;
168  q2=(b2*t1-b1*t2*cfi)/beta;
169  q3=(b3*t1/beta-t2*sfi);
170  } else {
171  q1 = stet*cfi;
172  q2 = stet*sfi;
173  q3 = ctet;
174  }
175 
177  theParticle->getMass(),
178  ParticleTable::getINCLMass(createdType));
179  q1 *= xq;
180  q2 *= xq;
181  q3 *= xq;
182 
183  ThreeVector createdMomentum(q1, q2, q3);
184  ThreeVector createdPosition(theParticle->getPosition());
185  Particle *createdParticle = new Particle(createdType, createdMomentum, createdPosition);
186  theParticle->setMomentum(-createdMomentum);
187  theParticle->adjustEnergyFromMomentum();
188 
189  fs->addModifiedParticle(theParticle);
190  fs->addCreatedParticle(createdParticle);
191 
192  }
193  else if (nbpart == 3) {
194 // assert(pionType1!=Neutron && pionType2!=Neutron);
195  ParticleList list;
196  list.push_back(theParticle);
197  const ThreeVector &rposdecay = theParticle->getPosition();
198  const ThreeVector zero;
199  Particle *Pion1 = new Particle(pionType1,zero,rposdecay);
200  Particle *Pion2 = new Particle(pionType2,zero,rposdecay);
201  list.push_back(Pion1);
202  list.push_back(Pion2);
203 
204  fs->addModifiedParticle(theParticle);
205  fs->addCreatedParticle(Pion1);
206  fs->addCreatedParticle(Pion2);
207 
208  // PhaseSpaceGenerator::generateBiased(sqrtS, list, 0, angularSlope); Biasing?
209  PhaseSpaceGenerator::generate(sqrtS, list);
210  }
211 
212  }
#define INCL_FATAL(x)
G4double getMass() const
Get the cached particle mass.
G4double adjustEnergyFromMomentum()
Recompute the energy to match the momentum.
G4double momentumInCM(Particle const *const p1, Particle const *const p2)
gives the momentum in the CM frame of two particles.
int G4int
Definition: G4Types.hh:78
void generate(const G4double sqrtS, ParticleList &particles)
Generate an event in the CM system.
G4double getINCLMass(const G4int A, const G4int Z)
Get INCL nuclear mass (in MeV/c^2)
G4INCL::ParticleType getType() const
G4double perp() const
const G4INCL::ThreeVector & getPosition() const
void setType(ParticleType t)
G4double getX() const
G4double shoot()
Definition: G4INCLRandom.cc:93
G4double mag() const
double G4double
Definition: G4Types.hh:76
G4double getZ() const
virtual void setMomentum(const G4INCL::ThreeVector &momentum)
G4double getY() const

Here is the call graph for this function:


The documentation for this class was generated from the following files: