Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4INCL::PiNToEtaChannel Class Reference

#include <G4INCLPiNToEtaChannel.hh>

Inheritance diagram for G4INCL::PiNToEtaChannel:
Collaboration diagram for G4INCL::PiNToEtaChannel:

Public Member Functions

 PiNToEtaChannel (Particle *, Particle *)
 
virtual ~PiNToEtaChannel ()
 
void fillFinalState (FinalState *fs)
 
- Public Member Functions inherited from G4INCL::IChannel
 IChannel ()
 
virtual ~IChannel ()
 
FinalStategetFinalState ()
 

Detailed Description

Definition at line 47 of file G4INCLPiNToEtaChannel.hh.

Constructor & Destructor Documentation

G4INCL::PiNToEtaChannel::PiNToEtaChannel ( Particle p1,
Particle p2 
)

Definition at line 47 of file G4INCLPiNToEtaChannel.cc.

48  : particle1(p1), particle2(p2)
49  {
50 
51  }
G4INCL::PiNToEtaChannel::~PiNToEtaChannel ( )
virtual

Definition at line 53 of file G4INCLPiNToEtaChannel.cc.

53  {
54 
55  }

Member Function Documentation

void G4INCL::PiNToEtaChannel::fillFinalState ( FinalState fs)
virtual

Implements G4INCL::IChannel.

Definition at line 57 of file G4INCLPiNToEtaChannel.cc.

57  {
58  Particle * nucleon;
59  Particle * pion;
60  if(particle1->isNucleon()) {
61  nucleon = particle1;
62  pion = particle2;
63  } else {
64  nucleon = particle2;
65  pion = particle1;
66  }
67 
68 
69  G4int iso=ParticleTable::getIsospin(nucleon->getType())+ParticleTable::getIsospin(pion->getType());
70 // assert(iso == 1 || iso == -1);
71  if (iso == 1) {
72  nucleon->setType(Proton);
73  }
74  else if (iso == -1) {
75  nucleon->setType(Neutron);
76  }
77  pion->setType(Eta);
78  G4double sh=nucleon->getEnergy()+pion->getEnergy();
79  G4double mn=nucleon->getMass();
80  G4double me=pion->getMass();
81  G4double en=(sh*sh+mn*mn-me*me)/(2*sh);
82  nucleon->setEnergy(en);
83  G4double ee=std::sqrt(en*en-mn*mn+me*me);
84  pion->setEnergy(ee);
85  G4double pn=std::sqrt(en*en-mn*mn);
86 
87 // real distribution (from PRC 78, 025204 (2008))
88 
89 
90  G4double ECM=G4INCL::KinematicsUtils::totalEnergyInCM(particle1,particle2);
91 
92  const G4double pi=std::acos(-1.0);
93  G4double x1;
94  G4double u1;
95  G4double fteta;
96  G4double teta;
97  G4double fi;
98 
99  if (ECM < 1650.) {
100 // below 1650 MeV - angular distribution (x=cos(theta): ax^2+bx+c
101 
102  G4double f1= -0.0000288627*ECM*ECM+0.09155289*ECM-72.25436; // f(1) that is the maximum (fit on experimental data)
103  G4double b1=(f1-(f1/(1.5-0.5*std::pow((ECM-1580.)/95.,2))))/2.; // ideas: 1) f(-1)=0.5f(1); 2) "power term" flattens the distribution away from ECM=1580 MeV
104  G4double a1=2.5*b1; // minimum at cos(theta) = -0.2
105  G4double c1=f1-3.5*b1;
106 
107  G4double interg1=2.*a1/3. +2.*c1; // (integral to normalize)
108 
109  G4int passe1=0;
110  while (passe1==0) {
111  // Sample x from -1 to 1
112  x1=Random::shoot();
113  if (Random::shoot() > 0.5) x1=-x1;
114 
115  // Sample u from 0 to 1
116  u1=Random::shoot();
117  fteta=(a1*x1*x1+b1*x1+c1)/interg1;
118  // The condition
119  if (u1*f1/interg1 < fteta) {
120  teta=std::acos(x1);
121  passe1=1;
122  }
123  }
124  }
125  else {
126 // above 1650 MeV - angular distribution (x=cos(theta): (ax^2+bx+c)*(0.5+(arctan(10*(x+dev)))/pi) + vert
127 
128  G4double a2=-0.29;
129  G4double b2=0.348; // ax^2+bx+c: around cos(theta)=0.6 with maximum at 0.644963 (value = 0.1872666)
130  G4double c2=0.0546;
131  G4double dev=-0.2; // tail close to zero from "dev" down to -1
132  G4double vert=0.04; // to avoid negative differential cross sections
133 
134  G4double interg2=0.1716182902205207; // with the above given parameters! (integral to normalize)
135  const G4double f2=1.09118088; // maximum (integral taken into account)
136 
137  G4int passe2=0;
138  while (passe2==0) {
139  // Sample x from -1 to 1
140  x1=Random::shoot();
141  if (Random::shoot() > 0.5) x1=-x1;
142 
143  // Sample u from 0 to 1
144  u1=Random::shoot();
145  fteta=((a2*x1*x1+b2*x1+c2)*(0.5+(std::atan(10*(x1+dev)))/pi) + vert)/interg2;
146  // The condition
147  if (u1*f2 < fteta) {
148  teta=std::acos(x1);
149  passe2=1;
150  }
151  }
152  }
153 
154  fi=(2.0*pi)*Random::shoot();
155 
156  ThreeVector mom_nucleon(
157  pn*std::sin(teta)*std::cos(fi),
158  pn*std::sin(teta)*std::sin(fi),
159  pn*std::cos(teta)
160  );
161 // end real distribution
162 
163  nucleon->setMomentum(-mom_nucleon);
164  pion->setMomentum(mom_nucleon);
165 
166  fs->addModifiedParticle(nucleon);
167  fs->addModifiedParticle(pion);
168  }
G4bool pion(G4int ityp)
int G4int
Definition: G4Types.hh:78
G4bool nucleon(G4int ityp)
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
G4bool isNucleon() const
G4double shoot()
Definition: G4INCLRandom.cc:93
static constexpr double pi
Definition: G4SIunits.hh:75
double G4double
Definition: G4Types.hh:76
G4double totalEnergyInCM(Particle const *const p1, Particle const *const p2)

Here is the call graph for this function:


The documentation for this class was generated from the following files: