Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4LENDFission.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 #include "G4LENDFission.hh"
27 #include "G4SystemOfUnits.hh"
28 #include "G4Nucleus.hh"
29 #include "G4IonTable.hh"
30 
32 {
33 
34  G4double temp = aTrack.GetMaterial()->GetTemperature();
35 
36  //migrate to integer A and Z (GetN_asInt returns number of neutrons in the nucleus since this)
37  G4int iZ = aTarg.GetZ_asInt();
38  G4int iA = aTarg.GetA_asInt();
39  //G4int iM = aTarg.GetM_asInt();
40  G4int iM = 0;
41  if ( aTarg.GetIsotope() != NULL ) {
42  iM = aTarg.GetIsotope()->Getm();
43  }
44 
45  G4double ke = aTrack.GetKineticEnergy();
46 
47  G4HadFinalState* theResult = &theParticleChange;
48  theResult->Clear();
49 
50  G4GIDI_target* aTarget = usedTarget_map.find( lend_manager->GetNucleusEncoding( iZ , iA , iM ) )->second->GetTarget();
51  std::vector<G4GIDI_Product>* products = aTarget->getFissionFinalState( ke*MeV, temp, MyRNG, NULL );
52  if ( products != NULL )
53  {
54  for ( G4int j = 0; j < int( products->size() ); j++ )
55  {
56  G4int jZ = (*products)[j].Z;
57  G4int jA = (*products)[j].A;
58  G4int jM = (*products)[j].m;
59 
60  //G4cout << "Z = " << (*products)[j].Z
61  // << ", A = " << (*products)[j].A
62  // << ", EK = " << (*products)[j].kineticEnergy << " [MeV]"
63  // << ", px = " << (*products)[j].px
64  // << ", py = " << (*products)[j].py
65  // << ", pz = " << (*products)[j].pz
66  // << ", birthTimeSec = " << (*products)[j].birthTimeSec << " [second]"
67  // << G4endl;
68 
70 
71  if ( jZ > 0 )
72  {
73  theSec->SetDefinition( G4IonTable::GetIonTable()->GetIon( jZ, jA , jM ) );
74  }
75  else if ( jA == 1 && jZ == 0 )
76  {
77  theSec->SetDefinition( G4Neutron::Neutron() );
78  }
79  else
80  {
81  theSec->SetDefinition( G4Gamma::Gamma() );
82  }
83 
84  theSec->SetMomentum( G4ThreeVector( (*products)[j].px*MeV , (*products)[j].py*MeV , (*products)[j].pz*MeV ) );
85  //G4cout << theSec->GetDefinition()->GetParticleName() << G4endl;
86  theResult->AddSecondary( theSec );
87  //Set time for delayed neutrons
88  //Current implementation is a little tricky,
89  if ( (*products)[j].birthTimeSec != 0 ) {
90  G4double time = (*products)[j].birthTimeSec*second + aTrack.GetGlobalTime();
91  theResult->GetSecondary(theResult->GetNumberOfSecondaries()-1)->SetTime(time);
92  }
93  }
94  }
95  delete products;
96 
97  theResult->SetStatusChange( stopAndKill );
98 
99  return theResult;
100 
101 }
102 const std::pair<G4double, G4double> G4LENDFission::GetFatalEnergyCheckLevels() const
103 {
104  // max energy non-conservation is mass of heavy nucleus
105  //return std::pair<G4double, G4double>(5*perCent,250*GeV);
106  return std::pair<G4double, G4double>(5*perCent,DBL_MAX);
107 }
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
void SetMomentum(const G4ThreeVector &momentum)
G4HadSecondary * GetSecondary(size_t i)
CLHEP::Hep3Vector G4ThreeVector
double MyRNG(void *)
Definition: G4LENDModel.cc:45
static constexpr double perCent
Definition: G4SIunits.hh:332
static constexpr double second
Definition: G4SIunits.hh:157
int G4int
Definition: G4Types.hh:78
virtual const std::pair< G4double, G4double > GetFatalEnergyCheckLevels() const
void SetStatusChange(G4HadFinalStateStatus aS)
std::vector< G4GIDI_Product > * getFissionFinalState(double e_in, double temperature, double(*rng)(void *), void *rngState)
G4int GetNucleusEncoding(G4int iZ, G4int iA, G4int iM)
G4int Getm() const
Definition: G4Isotope.hh:100
std::map< G4int, G4LENDUsedTarget * > usedTarget_map
Definition: G4LENDModel.hh:81
G4double GetKineticEnergy() const
G4double GetGlobalTime() const
typedef int(XMLCALL *XML_NotStandaloneHandler)(void *userData)
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
static G4IonTable * GetIonTable()
Definition: G4IonTable.hh:78
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &aTargetNucleus)
const G4Isotope * GetIsotope()
Definition: G4Nucleus.hh:119
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4double GetTemperature() const
Definition: G4Material.hh:182
static constexpr double MeV
Definition: G4SIunits.hh:214
const G4Material * GetMaterial() const
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
double G4double
Definition: G4Types.hh:76
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
G4LENDManager * lend_manager
Definition: G4LENDModel.hh:80
#define DBL_MAX
Definition: templates.hh:83
G4int GetNumberOfSecondaries() const