Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4INCLNDeltaEtaProductionChannel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Alain Boudard, CEA-Saclay, France
28 // Joseph Cugnon, University of Liege, Belgium
29 // Jean-Christophe David, CEA-Saclay, France
30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31 // Sylvie Leray, CEA-Saclay, France
32 // Davide Mancusi, CEA-Saclay, France
33 //
34 #define INCLXX_IN_GEANT4_MODE 1
35 
36 #include "globals.hh"
37 
39 #include "G4INCLKinematicsUtils.hh"
41 #include "G4INCLRandom.hh"
42 #include "G4INCLGlobals.hh"
43 #include "G4INCLLogger.hh"
45 
46 namespace G4INCL {
47 
48  const G4double NDeltaEtaProductionChannel::angularSlope = 6.;
49  const G4int NDeltaEtaProductionChannel::maxTries = 100000;
50 
52  : particle1(p1), particle2(p2)
53  {}
54 
56 
57  G4double NDeltaEtaProductionChannel::sampleDeltaMass(G4double ecmorigin) {
58  const G4double ecm = ecmorigin - 686.987; // 686.987 MeV translation to open pion(delta) production in NNEta
59  const G4double maxDeltaMass = ecm - ParticleTable::effectiveNucleonMass - 1.0;
60  const G4double maxDeltaMassRndm = std::atan((maxDeltaMass-ParticleTable::effectiveDeltaMass)*2./ParticleTable::effectiveDeltaWidth);
61  const G4double deltaMassRndmRange = maxDeltaMassRndm - ParticleTable::minDeltaMassRndm;
62 // assert(deltaMassRndmRange>0.);
63 
64  G4double y=ecm*ecm;
65  G4double q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2, 6.4E5 = 800^2
66  G4double q3=std::pow(std::sqrt(q2), 3.);
67  const G4double f3max=q3/(q3+5.832E6); // 5.832E6 = 180^3
68  G4double x;
69 
70  G4int nTries = 0;
71  G4bool success = false;
72  while(!success) { /* Loop checking, 10.07.2015, D.Mancusi */
73  if(++nTries >= maxTries) {
74  INCL_WARN("NDeltaEtaProductionChannel::sampleDeltaMass loop was stopped because maximum number of tries was reached. Minimum delta mass "
75  << ParticleTable::minDeltaMass << " MeV with CM energy " << ecm << " MeV may be unphysical." << '\n');
77  }
78 
79  G4double rndm = ParticleTable::minDeltaMassRndm + Random::shoot() * deltaMassRndmRange;
80  y = std::tan(rndm);
82 // assert(x>=ParticleTable::minDeltaMass && ecm >= x + ParticleTable::effectiveNucleonMass + 1.0);
83 
84  // generation of the delta mass with the penetration factor
85  // (see prc56(1997)2431)
86  y=x*x;
87  q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2, 6.4E5 = 800^2
88  q3=std::pow(std::sqrt(q2), 3.);
89  const G4double f3=q3/(q3+5.832E6); // 5.832E6 = 180^3
90  rndm = Random::shoot();
91  if (rndm*f3max < f3)
92  success = true;
93  }
94  return x;
95  }
96 
98 
105  G4int is1=ParticleTable::getIsospin(particle1->getType());
106  G4int is2=ParticleTable::getIsospin(particle2->getType());
107 
108  ParticleList list;
109  list.push_back(particle1);
110  list.push_back(particle2);
111  fs->addModifiedParticle(particle1);
112  fs->addModifiedParticle(particle2);
113 
114 // isospin Repartition of N and Delta;
115  G4double ecm = KinematicsUtils::totalEnergyInCM(particle1, particle2);
116  const G4int isospin = is1+is2;
117 
118  G4double rndm = 0.0;
119  G4double xmdel = sampleDeltaMass(ecm);
120 
121  G4int index2=0;
122  if (isospin == 0) { // pn case
123  rndm = Random::shoot();
124  if (rndm < 0.5) index2=1;
125  }
126 
127  if (isospin == 0) {
128  if(index2 == 1) {
129  G4int isi=is1;
130  is1=is2;
131  is2=isi;
132  }
133 // particle1->setHelicity(0.0);
134  } else {
135  rndm = Random::shoot();
136  if (rndm >= 0.25) {
137  is1=3*is1;
138  is2=-is2;
139  }
140 // particle1->setHelicity(ctet*ctet);
141  }
142 
144  particle1->setType(DeltaMinus);
145  } else if(is1 == ParticleTable::getIsospin(DeltaZero)) {
146  particle1->setType(DeltaZero);
147  } else if(is1 == ParticleTable::getIsospin(DeltaPlus)) {
148  particle1->setType(DeltaPlus);
149  } else if(is1 == ParticleTable::getIsospin(DeltaPlusPlus)) {
150  particle1->setType(DeltaPlusPlus);
151  }
152 
153  if(is2 == ParticleTable::getIsospin(Proton)) {
154  particle2->setType(Proton);
155  } else if(is2 == ParticleTable::getIsospin(Neutron)) {
156  particle2->setType(Neutron);
157  }
158 
159  if(particle1->isDelta()) particle1->setMass(xmdel);
160  if(particle2->isDelta()) particle2->setMass(xmdel);
161 
162  fs->addModifiedParticle(particle1);
163  fs->addModifiedParticle(particle2);
164 
165  const ThreeVector &rcolnucleon1 = particle1->getPosition();
166  const ThreeVector &rcolnucleon2 = particle2->getPosition();
167  const ThreeVector rcol = (rcolnucleon1+rcolnucleon2)*0.5;
168  const ThreeVector zero;
169  Particle *eta = new Particle(Eta,zero,rcol);
170  list.push_back(eta);
171  fs->addCreatedParticle(eta);
172 
173  const G4double sqrtS = KinematicsUtils::totalEnergyInCM(particle1, particle2);
174  G4int biasIndex = ((Random::shoot()<0.5) ? 0 : 1);
175  PhaseSpaceGenerator::generateBiased(sqrtS, list, biasIndex, angularSlope);
176 
177  const ThreeVector vz(0.0,0.0,1.0);
178  G4double ctet=(particle1->getMomentum().dot(vz))/particle1->getMomentum().mag();
179  if (isospin == 0)
180  particle1->setHelicity(0.0);
181  else
182  particle1->setHelicity(ctet*ctet);
183  fs->addModifiedParticle(particle1);
184 
185  }
186 
187 }
void addCreatedParticle(Particle *p)
void setMass(G4double mass)
G4double dot(const ThreeVector &v) const
G4ThreadLocal G4double minDeltaMassRndm
const G4INCL::ThreeVector & getMomentum() const
G4bool isDelta() const
Is it a Delta?
#define INCL_WARN(x)
int G4int
Definition: G4Types.hh:78
bool G4bool
Definition: G4Types.hh:79
void generateBiased(const G4double sqrtS, ParticleList &particles, const size_t index, const G4double slope)
Generate a biased event in the CM system.
const G4double effectiveDeltaWidth
G4ThreadLocal G4double minDeltaMass
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
G4INCL::ParticleType getType() const
const G4INCL::ThreeVector & getPosition() const
void setType(ParticleType t)
G4double shoot()
Definition: G4INCLRandom.cc:93
G4double mag() const
const G4double effectiveDeltaMass
double G4double
Definition: G4Types.hh:76
G4double totalEnergyInCM(Particle const *const p1, Particle const *const p2)
const G4double effectiveNucleonMass
void addModifiedParticle(Particle *p)
void setHelicity(G4double h)