178   outFile << 
"G4WilsonAbrasionModel is a macroscopic treatment of\n" 
  179           << 
"nucleus-nucleus collisions using simple geometric arguments.\n" 
  180           << 
"The smaller projectile nucleus gouges out a part of the larger\n" 
  181           << 
"target nucleus, leaving a residual nucleus and a fireball\n" 
  182           << 
"region where the projectile and target intersect.  The fireball" 
  183           << 
"is then treated as a highly excited nuclear fragment.  This\n" 
  184           << 
"model is based on the NUCFRG2 model and is valid for all\n" 
  185           << 
"projectile energies between 70 MeV/n and 10.1 GeV/n. \n";
 
  287     G4cout <<
"########################################" 
  288            <<
"########################################" 
  292     G4cout <<
"Initial projectile A=" <<AP 
 
  294            <<
", radius = " <<rP/
fermi <<
" fm" 
  296     G4cout <<
"Initial target     A=" <<AT
 
  298            <<
", radius = " <<rT/
fermi <<
" fm" 
  300     G4cout <<
"Projectile momentum and Energy/nuc = " <<pP <<
" ," <<E <<
G4endl;
 
  307   G4double rm   = ZP * ZT * elm_coupling / (E * AP);
 
  325   G4bool skipInteraction = 
false;  
 
  326   const G4int maxNumberOfLoops = 1000;
 
  327   G4int loopCounter = -1;
 
  328   while (Dabr == 0 && ++loopCounter < maxNumberOfLoops)  
 
  331     if (theAbrasionGeometry)
 
  333       delete theAbrasionGeometry;
 
  334       theAbrasionGeometry = NULL;
 
  352       skipInteraction = 
true;
 
  361     while (r > rPT && ++evtcnt < 1000)  
 
  364       r            = (rm + std::sqrt(rm*rm + 4.0*bsq)) / 2.0;
 
  370     if (evtcnt >= 1000) {
 
  371       skipInteraction = 
true;
 
  381       G4double x = (rPsq + rsq - rTsq) / 2.0 / r;
 
  382       if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
 
  383       else         CT = 2.0 * std::sqrt(rTsq - rsq);
 
  387       G4double x = (rTsq + rsq - rPsq) / 2.0 / r;
 
  388       if (x > 0.0) CT = 2.0 * std::sqrt(rTsq - x*x);
 
  400     F                   = theAbrasionGeometry->
F();
 
  404     for (
G4int i = 0; i<10; i++)
 
  409         if (n>AP) Dabr = (
G4int) AP;
 
  410         else      Dabr = (
G4int) n;
 
  416   if ( loopCounter >= maxNumberOfLoops || skipInteraction ) {
 
  422       G4cout <<
"Particle energy too low to overcome repulsion." <<
G4endl;
 
  423       G4cout <<
"Event rejected and original track maintained" <<
G4endl;
 
  424       G4cout <<
"########################################" 
  425              <<
"########################################" 
  458   for (i=0; i<nSecP; i++)
 
  461       GetParticle()->GetTotalEnergy();
 
  469   if (DspcP <= 0)           DspcP = 0;
 
  470   else if (DspcP > AP-Dabr) DspcP = ((
G4int) AP) - Dabr;
 
  478   G4bool excitationAbsorbedByProjectile = 
false;
 
  479   if (fragmentP != NULL)
 
  485     if (excitationAbsorbedByProjectile)
 
  488     if (xP > 
B*(AP-Dabr)) xP = 
B*(AP-Dabr);
 
  490     lorentzVector.setE(lorentzVector.e()+xP);
 
  492     TotalEPost += lorentzVector.e();
 
  506   for (i=nSecP; i<nSec; i++)
 
  509       GetParticle()->GetTotalEnergy();
 
  517   if (DspcT <= 0)           DspcT = 0;
 
  518   else if (DspcT > AP-Dabr) DspcT = ((
G4int) AT) - Dabr;
 
  526   if (fragmentT != NULL)
 
  530     if (!excitationAbsorbedByProjectile)
 
  533     if (xT > 
B*(AT-Dabr)) xT = 
B*(AT-Dabr);
 
  535     lorentzVector.setE(lorentzVector.e()+xT);
 
  537     TotalEPost += lorentzVector.e();
 
  545   G4double deltaE = TotalEPre - TotalEPost;
 
  549     boost = boost / boost.mag() * beta;
 
  556   for (i=0; i<nSecP; i++)
 
  561     lorentzVector.boost(-boost);
 
  563     pBalance -= lorentzVector.vect();
 
  575   if (fragmentP != NULL)
 
  578     G4double fragmentM            = lorentzVector.m();
 
  585       fragmentP->
SetMomentum(lorentzVector.boost(-boost * fragmentGroundStateM/fragmentM));
 
  595     G4cout <<
"-----------------------------------" <<
G4endl;
 
  596     G4cout <<
"Secondary nucleons from projectile:" <<
G4endl;
 
  597     G4cout <<
"-----------------------------------" <<
G4endl;
 
  599     for (i=0; i<nSecP; i++)
 
  611     if (fragmentP != NULL)
 
  620     for (i=nSecP; i<nSec; i++)
 
  632     if (fragmentT != NULL)
 
  642   if (fragmentP !=NULL)
 
  652     G4ReactionProductVector::iterator iter;
 
  653     for (iter = products->begin(); iter != products->end(); ++iter)
 
  657         (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
 
  659       G4String particleName = (*iter)->GetDefinition()->GetParticleName();
 
  661       if (
verboseLevel >= 2 && particleName.find(
"[",0) < particleName.size())
 
  666         G4cout <<
" fragmentP = " <<particleName
 
  679   if (fragmentT != NULL)
 
  689     G4ReactionProductVector::iterator iter;
 
  690     for (iter = products->begin(); iter != products->end(); ++iter)
 
  694         (*iter)->GetTotalEnergy(), (*iter)->GetMomentum());
 
  696       G4String particleName = (*iter)->GetDefinition()->GetParticleName();
 
  698       if (
verboseLevel >= 2 && particleName.find(
"[",0) < particleName.size())
 
  703         G4cout <<
" fragmentT = " <<particleName
 
  712      G4cout <<
"########################################" 
  713             <<
"########################################" 
  716   delete theAbrasionGeometry;
 
  757   G4bool isForLoopExitAnticipated = 
false;
 
  758   for (
G4int i=0; i<Dabr; i++)
 
  767     const G4int maxNumberOfLoops = 100000;
 
  768     G4int loopCounter = -1;
 
  769     while (!found && ++loopCounter < maxNumberOfLoops)  
 
  774         C2*
G4Exp(-psq/p2sq/2.0) + C3*
G4Exp(-psq/p3sq/2.0) + p/gamma/(0.5*(
G4Exp(p/gamma)-
G4Exp(-p/gamma)));
 
  776     if ( loopCounter >= maxNumberOfLoops )
 
  778       isForLoopExitAnticipated = 
true;
 
  803     G4double sintheta = std::sqrt((1.0 - costheta)*(1.0 + costheta));
 
  805     G4ThreeVector direction(sintheta*std::cos(phi),sintheta*std::sin(phi),costheta);
 
  807     G4double E           = std::sqrt(p*p + nucleonMass*nucleonMass)-nucleonMass;
 
  820   if ( ! isForLoopExitAnticipated && Z-Zabr>=1.0 )
 
  824     G4double E       = std::sqrt(pabr.mag2() + ionMass*ionMass);
 
  850   if (r > rT) Cl = 2.0*std::sqrt(rPsq + 2.0*r*rT - rsq - rTsq);
 
  860   if      (rT > rP && rsq < rTsq - rPsq) Ct = 2.0 * rP;
 
  861   else if (rP > rT && rsq < rPsq - rTsq) Ct = 2.0 * rT;
 
  863     G4double bP = (rPsq+rsq-rTsq)/2.0/r;
 
  866       G4cerr <<
"########################################" 
  867              <<
"########################################" 
  869       G4cerr <<
"ERROR IN G4WilsonAbrasionModel::GetNucleonInducedExcitation" 
  871       G4cerr <<
"rPsq - bP*bP < 0.0 and cannot be square-rooted" <<
G4endl;
 
  873       G4cerr <<
"########################################" 
  874              <<
"########################################" 
  877     Ct = 2.0*std::sqrt(x);
 
  882     Ex += 13.0 * Cl / 
fermi /3.0 * (Ct/
fermi - 1.5);
 
  930   G4cout <<
" *****************************************************************" 
  932   G4cout <<
" Nuclear abrasion model for nuclear-nuclear interactions activated" 
  934   G4cout <<
" (Written by QinetiQ Ltd for the European Space Agency)" 
  936   G4cout <<
" *****************************************************************" 
G4double GetExcitationEnergyOfTarget()
 
static G4Pow * GetInstance()
 
void SetUseAblation(G4bool)
 
G4double powA(G4double A, G4double y) const 
 
G4double AtomicMass(const G4double A, const G4double Z) const 
 
G4long G4Poisson(G4double mean)
 
G4ExcitationHandler * theExcitationHandlerx
 
G4HadSecondary * GetSecondary(size_t i)
 
G4double GetKineticEnergy() const 
 
CLHEP::Hep3Vector G4ThreeVector
 
G4Fragment * GetAbradedNucleons(G4int, G4double, G4double, G4double)
 
static G4Proton * ProtonDefinition()
 
void DumpInfo(G4int mode=0) const 
 
void SetMinEForMultiFrag(G4double anE)
 
G4ExcitationHandler * theExcitationHandler
 
G4WilsonAbrasionModel(G4bool useAblation1=false)
 
G4ParticleDefinition * GetDefinition() const 
 
G4ReactionProductVector * BreakItUp(const G4Fragment &theInitialState)
 
const G4String & GetParticleName() const 
 
void SetStatusChange(G4HadFinalStateStatus aS)
 
virtual void ModelDescription(std::ostream &) const 
 
std::vector< G4ReactionProduct * > G4ReactionProductVector
 
void SetMinEnergy(G4double anEnergy)
 
G4double GetNucleonInducedExcitation(G4double, G4double, G4double)
 
G4IonTable * GetIonTable() const 
 
G4GLOB_DLL std::ostream G4cout
 
double A(double temperature)
 
const G4ParticleDefinition * GetDefinition() const 
 
void SetVerboseLevel(G4int)
 
const G4LorentzVector & GetMomentum() const 
 
void SetMomentum(const G4LorentzVector &value)
 
G4double GetKineticEnergy() const 
 
void SetFermiModel(G4VFermiBreakUp *ptr)
 
G4ErrorTarget * theTarget
 
G4double GetEnergyDeposit()
 
void SetMultiFragmentation(G4VMultiFragmentation *ptr)
 
G4double GetGroundStateMass() const 
 
const G4LorentzVector & Get4Momentum() const 
 
G4LorentzVector Get4Momentum() const 
 
G4double G4Exp(G4double initial_x)
Exponential Function double precision. 
 
void Set4Momentum(const G4LorentzVector &momentum)
 
void SetEnergyChange(G4double anEnergy)
 
G4double GetPDGMass() const 
 
static G4ParticleTable * GetParticleTable()
 
G4double A13(G4double A) const 
 
void SetMaxAandZForFermiBreakUp(G4int anA, G4int aZ)
 
G4DynamicParticle * GetParticle()
 
G4WilsonAblationModel * theAblation
 
G4double GetExcitationEnergyOfProjectile()
 
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &, G4Nucleus &)
 
const G4double x[NPOINTSGL]
 
void SetEvaporation(G4VEvaporation *ptr)
 
void SetMaxEnergy(const G4double anEnergy)
 
G4HadFinalState theParticleChange
 
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
 
G4double GetPDGCharge() const 
 
G4ThreeVector G4ParticleMomentum
 
static G4Neutron * NeutronDefinition()
 
void SetMomentumChange(const G4ThreeVector &aV)
 
void PrintWelcomeMessage()
 
G4int GetNumberOfSecondaries() const 
 
static const double fermi
 
G4double GetWilsonRadius(G4double A)
 
G4GLOB_DLL std::ostream G4cerr
 
G4int GetBaryonNumber() const 
 
G4double GetTotalEnergy() const 
 
CLHEP::HepLorentzVector G4LorentzVector